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Summary

The dissertation 1is concerned with the structural mechﬁnics of
assemblies of pin—-jointed bars, and in particular with their rigidity and
performance under any load system,

A detailed review of the past developments and present knowledge is
conducted, which brings back to light some long-forgotten contributions and
traces the line for further study. The present investigation starts from an
analysis of the rigidity of a c¢lass of triangulated hyperbolic-paraboloidal
surfaces, which are found to be either rigid and statically determinate, or
not, according to the number of sides. In a more general context, the
introduction for any assembly of the four linear-algebraic vector subspaces
associated with its equilibrium matrix leads to the systematic evaluation of
the degrees of statical and kinematical indeterminacy, and of all the states
of selfstress and inextensional mechanisms., These are readily computed
following a computational scheme desc¢ribed in detall. Criteria for the
distinction of rigid-body mechanisms, infinitesimal mechanisms of first and
higher order, and finite mechanisms are established and tested by means of
several examples; computér—drawn plctures of these examples are enclosed.

The linear and non-linear responses of kinematically indeterminate
assemblies are analysed by decomposing any applied load into its extensiocnal
and inextensional components, and by'evaluating the bar tensions and nodal
displacemehts due to them, respectively. A third-order algebraic equétion is
introduced for correcting large inextensional displacements. This way of
proceeding leads to two efficient computer programs for the structural
analysis of cable structures, in which the total external load is applied in
only one step. The answers given by this method are compared to the results of
some careful experiments on cable structures, and to varicus data available
in the litérature.By-ﬁproducts of the investigation are a novel formulation
of the force method, in which the analyst'does not have to select the
'redundancies', a simple and general numerlcal technique for finding the nodal
coordinates of an unloaded tensegrity structure, and a new instrument for

measuring the tension in a steel wire very accurately.
Keywords: Cable structures. Formfinding. Ill-conditioned frameworks,

Kinematical indeterminacy. Mechanisms. Non-linear response. Stiff structures.

Structural mechanics. Tensegrity.
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1. Introduction

" This dissertation is concerned with the structural mechanics of assemblies of
bars connected by frictionless, spherical hinges - a structural type which
has been investigated extensively since the last century. Strictly speaking
the above hypotheses about the connections are almost never satisfied by
structures built in practice, and so much interest in thenm ‘w0uld seem
unjustified. Yet many existing structures have been analysed only 'by hand' as
pin-jointed, before the advent of the digital computer; and in spite of the
gophisticated analyses that c¢an be performed today, the pin-jointed
ldealization of a framework is often still a meaningful point of reference.

Previous work in this field has left a cloud of unanswered questions,
exceptions to the rules commonly used for design, gnd anomalies 1in the
expected behaviour. The first aim of the present work is to develop a
comprehensive framework of ideas which includes all structural assemblies
and explains thgir fundamental patterns of behaviour, Quantitative estimates
of the response to arbitrary systems of loads will also be made, and the
techniques introduced will be vefified in several ways.

An important further reason for the present investigation is that, in the
past, many of Ehe concepts and techniques first developed for pin—jointed
assemblies have been subsequently eﬁtended to more complicated structural
systems (e.g. framed structures and continua); with luck, this will happen in

the present case as well,

1.1 Basic¢ concepts

The study of pin-jointed assemblies (alac called frameworks or trusses)
usually occupies the initial chapters of any traditional textbook of
Structural Analysis, Its reader 1s Introduced to the concepts of statical and
kinematical determinacy, which are central to an understanding of the

structural mechanics of any assembly, by means of an example such as that

shown in Fig, f.ta. This framework is clearly statically determinate, since
the tension in every bar-can be determined by meané of the equations of
'equilibrium of the joint, for any given set of components of external fbrce
applied to the joint: there are 3 (linear) equations in 3 unknowhs, the matrix

of-the-system of equations is non-singular, and the solution for the set of




Fig., 1.1

al s=0, m=0 b} s=0, m=1

¢) s=1, m=0 dl) s=1, m=1

d2) s=1, m=1

Perspective sketches of three—-dimensional assemblies to
illustrate statical and kinematical determinacy and
indeterminacy. a} The three foundation jolnts lie at the corners
of a square. b) One bar has now been removed, and the assembly has
a mode of inextensional displacement, in which the central node
moves towards the reader. ¢} The fourth bar makes the assembly
statically indeterminate. d1) A third bar added to b) makes the
assembly both statically and kinematically indeterminate, but
only small displacements of the 'inextensional' mechanism are
possible, d2)} As d1), except that the three foundation jdints are
collinear, and the inextensional mechanism can move freely, as in

b).
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bar tensions is unique. This framework is also kinematically determinate,

since any displacement of the joint from its position causes a change of
length of the bars,

If now any one bar of the framework is removed, as 1in Fig. 1.1b, the
resulting assembly is no longer rigid. It is a mechanism having one degree of

freedom: it 1s kinematically indeterminate, since the Jjoint displacement

indicated in broken line in the figure causes no change of length of the bars.
But if an extra bar is added to the assembly of Flg. 1.1a, as shown in

Fig. 1.17¢, it becomes statically indeterminate: there are now 3 equations of

equilibrium and 4 unknowns, and the solution for the set of bar tensions is

not unique. Such an assembly may be described as having one redundant bar; but

the statical indeterminacy is best described by saying that the assembly can

sustain one state of selfstress, i.e. a set of bar tensions which are in

equilibrium Qrth zero external forces. If the legs of the tetrapod of
Fig. 1.1c have equal length, the state of selfstress consists of tensions
equal in absolute value and, say, tensile in bars 1,3 and compressive in bérs
2,4.1

More generally, thé textbook would conclude, if the number of bars in a
framework is equal to three times the number of Jjoints, the framework is both
statically determinate and kinematically determinate. But if the number of
bars is smaller (larger), the framework 1is kinematically (statically)’
indeterminate,

A discussion along these lines of the general theory of structural
frameworks would be adequate at an elementary level, but it has been known for
many years — as will be shown in Chapter 2 r.that there are exceptions to it.
Two such exceptlons are the assemblies of Fig, 1.1d: although the above rule
would classify each of them as both statically determinate and kinematically
determinate, it is plain that this is wrong, In fact, both assemblies are
statically indeterminate, their state of selfstress conslsting of - gay - a
compressive force in the vertical bar, and tensile forces elsewhere; but they
are also kinematically indeterminate, and their mechanisms are shown in the

figure. The main difference In their behaviour is that the first assembly,

It is easiest to visuallse this by 4imagining that the new bar, 14, is a

little longer than the distance which 1t is to connect; and hence the

-other bars have to provide a compressive axial force that shortens bar 4
- and makes it fit. -
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Fig. 1.1d1, is an infinitesimal mechanism, which tightens up when mobilized in

a way which depends quantitatively on the elastic properties of the bars. The

second assembly, Fig. 1.1d2, 1s a finite mechanism which is free to undergo

large displacements.
For the sake of brevity, assemblies which are statically determinate and

kinematically determinate will be referred to simply as statically and

kinematically determinate from now on. And similarly, in the indeterminate

case, they will be referred to as statically and kinematically indeterminate.

Lastly, a method of analysis which will be used in Chapter 3 and

elsewhere is the method of Tension Coefficlents, first introduced In Britain

by Southwell {1920). The tension coefficient of a pin-jointed bar is defined
as the ratio between the tension in the member and its length. When one
considers the equilibrium equation in direction x, say, of one of the joints
of the bar, the cohtribution of the bar is i(lx/l)t, where 1 and 1, denote the
bar length and its component along x, respectively, and t is the bar tension.
Note that, by introducing the tension coefficient (t/1), one can transform the
previous expression into ilx(t/l); thus one needs to consider only the
componenta of the lenéth of each bar, in order to write down the nodal
equations of equilibrium. Furthermore, in some circumstances the use of
tension coefficients allows complicated states of tension to be expressed by

integer number‘s.2

1.2 Origins of the subject and its aims

It should be clear from Section 1.1 (see Figs 1.ib and 1.td) that, when
starting the analysis of a given framework, one of the first questions to be

answered is: is it a rigid structure? Chapters 2-5 of this dissertation will

discuss the analytical and numerical techniques that may be used to find out;

in particular, Chapter 2 will summarize several contributions by well- and-

less well-known authors in the field of structural engineering and applied

2 In one of the initial stages of the research described in this

dissertation, the author exploited some of the simplifications
introduced by the use of tension coefflcients to write a Fortran program
for the evaluation of the states of selfstress and inextensional
mechanisms of simple frameworks, which performed computations only with
integer numbers (Pellegrino,1983). The advantage of thls way of
proceeding is that one can obtain correct answers, because no numerical
approximations are made; its obvlous disadvantage is that the class of
problems that one can tackle is very limited. This work will not be
described here. : .

B S




mathematics. Yet it is interesting to note that the earliest 'theorem' of
structural rigidity, which can be applied to complex three~dimensional
frameworks, is due to Euelid about 300 B.C.

Cauchy (1813) aimed at "demonstrating the theorem hidden behind
definition no, 9 ih the second volume of the Elements, by Euelid" and indeed

he elegantly proved that: the angles formed by the rigid faces of a convex

polyhedron are invariable. Or, in simpler terms, any convex polyhedron is

rigid if its faces are rigid.

The rigidity of all convex triangulated surfaces built out of pin-jointed
bars, such as any geodesic dome, follows from the above theorem, Some more
theorems, which cover different structural layouts, will be given in
Section 2.2.

Yet the present work aims at a more general approach. For any given
assembly, a set of initial transformations of its equilibrium matrix will
¢lassify 1t according to the notions introduced in Section 1.1; will indicate
its degree of statical and kinematical indeterminacy; and will provide the
statical details of all of its states of selfstress and the kinematical
detalls of all of its inextensional mechanisms. These calculations find their
most natural application in the study of the response of a cable net or of a
tensegr‘ity3 structure to a system of applied loads.

It can be concluded that, although the subject of this dissertation
originates from one of the most eminent Greek geometers, Euclid, its

applications are certainly well into the future.

1.3 General hypetheses

Various points need to be mentioned before the investigation can start. First,
it will be assumed without further discussion that the idealization of a
physical framework or cable structure as a 'pin-jointed' assembly is
appropriate. ITf a member of the physical framework happens to be a wire, then
this idealization is only satisfactory, of course, as long as the wire is in a
state of tension; if a prestress has been imposed, it is necessary to check
that any subsequent, compressive change of tension .(due to applied loads;

temperature changes,...) is smaller, or at most equal to the pretension.

3 '"Tensegrity' is a term which was introcduced by R. Buckminster Fuller:
see Marks {1960) and Fuller (1975). :
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Furthermore, it will be assumed = with the only exception of the
rigideplastic analyses of Section 6.1.2 - that the response of a member to a
change of 1ts axial force is linear-elastic, and hence the posslbility of
yielding or buckling of any member is eXcluded.

Second, the equilibrium and compatibllity matrices, from which the
degrees of statical and kinematical indeterminacy are determined, will be set
up in the context of 'small deflection theory'. That is, the equilibrium and
compatibility equations will refer to the original, undistorted configuration
of the assembly. This is, of course, a well-known procedure in structural
mechanics which produces a set of linear-algebraic equations, and its
limitations are well known. For kinematically indeterminate assemblies which
are finite mechanisms the original configuration is not unique; but all the
equations can still be set up in the given configuration. 7

Third, the final parts of the present investigation, in which. the
possibillty of rather large 'inextensional' displacements will be considered,
will assume without discussion that a solution exists and it is unique, which
is a known result (see, e.g., Buchholdt, Davies & Hussey (1968), and Mdllmann

(1974)).

1.4 Qutline of the dissertation

Following the introduction, Chapter 2 reviews the development - during the
last century - of the standard rules for designing a rigid framework; the
early workers were aware of the existence of some exceptional structures,
which satisfied the general rules and yet did not behave accordingly. The
exceptional cases were the subject of extensive studies, rathe; on the
theoretical side. & loss of interest in these problems seems to have occurred
before the turn of this century; and only the recent _construction of
spectacular cable nets and tensegrity structures haé brought fresh interest
and some new results.

Chapter 3 examines the rigidity of a class of triangulated hyperbolic
paraboloids, and although 1ts initial aim is merely to test some of the
techniques available, it is found that the behaviour of these hyperbolic
paraboloids may be strongly affected by a change of the number of sides.

Chapter U4 sets up a conceptual framewérk which can include all frameworks

and can explain their behaviour: the crucial point is the introduction for




any assembly of the four vector subspaces associated with the equilibrium
matrix. The dlmensions of two of these subspaces are equal to the degrees of
statical and kinematical indeterminacy of the assembly, and can be readily
determined. The same computation provides also details of the states of
selfstress and inextensicnal mechanisms. Some of the inextensional mechanisms
of a kinematically indeterminate assembly can in some cases correspond to
motions in which the whole structure rigidly moves in space; and these
'rigid-body' mechanisms will be distinguished from the internal ones. And then
the small—~displacement internal mechanisms will be separated from the 'free!
mechanisms, The remainder of Chapter 4 presents applications of these
procedures. ’

A rigcrous classification of an infinitesimal mechanism, based on the
magnitude of the bar elongations 1t involves, is introduced in the first part
of Chapter 5. Finding the (prestressable) shape of a ténsegrity structure by
simple means concludes the chapter.

In Chapter 6, the 1deas developed in Chapter ! are applied to the
linear-elastic and rigid-plastic analyses of a rigid framework. They are alsc
applied to the analysié of the 'linear' response of prestressed mechanisms
such as cable structures; comparisons to results published by previous
researchers demonstrate the validity of the approach proposed.

Chapter 7 reports on a set of careful experiments conducted on three
hanging wires and two cable nets., Also included in this chapter are the
results of the numerical analyses based on Chapter 6.

Chapter 8 concludes with a brief summary of the main results and

suggestions for further work,




2. Review of previous work

The first contribﬁtions to the analysis of the mechanic¢s of kinematically
indeterminate structures, the starting point of this chapter, were made in the
second half of the 19th century. In the 1950's and 60's the construction of
spectacular cable nets and tensegrity systems showed the rfirst practical
realizations of such structures but, by that time, a lot of the basic
knowledge accumulated in scientific papers and textbooks had been forgotten
or could no longer be understood: these new structures were therefore
analysed by means of powerful numerical techniques that left no room for
basic understanding. Sections 2.1 and 2.2 deal with the earlier developments
of the theory; but, although a chronological arrangement is followed, the
description is by no means exhaustive. For the sake of consistency, several of
the symbols used are different from those of the original papers; and in
particular nodal coordinates will be always denoted by capital letters. The
following sections aim at presenting an account of the state of knowledge at
present,

The name of Buckminéter Fuller is usually associated with tensegrity but,
although some of his structures are discussed in great detail in the
following chapters, his own published work is not sultable for discussion

here,

2.1 Early developments (1837-1900)

Timoshenko (1953) and Charlton (1982) agree in attributing what might be
called the earliest work on the subject of this dissertation to Mobius, a

German professor of Astronomy. In his Treatise on_ Statics, Mdbius {1837)

analysed for the first time the mechanics of pin-jointed assemblies: a
general plane framework consisting of n frictionless hinges has to have at
least 2n-3 bars in order to be rigld, while a space framework needs 3n-b.

MSbius was aware of exceptions to this theorem, such as special plane

frameworké with 2n-~3 bars that can admit small relative displacements of-

their nodes; and he observed that this happens when the determinant of the

equllibrium equatiohs of:the nodes vanishes; As a practical way of detecting

whether or not this 1s the case MSbius suggested a method called the-

zero~load test by Timoshenko & Young (1965): a system which contains,

OSSR
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according to the rules above, the required number of connecting rods is rigid
if there 13 a unique set of bar tensicns in equilibrium with a given load.
This is most easily checked by showing that all bar tensions have to vanish
if no external loads are applied. Mébius also observed that the removal of one
bar from a framework which contains only the minimum number of bars to make
it rigid, in general has the consequence of transforming it into a mechanism
that allows relative displacements of the nodes, in which the distance
between the end nodes of thé removed bar changes by finife amounts, But he
pointed out that the removal of a bar the length of which is either maximum or
minimum, hence a bar the end nodes of which can move by smali amounts in
prescribed directions without causing significant alteration of its length,
does not introduce any further degree of internal mobility. MBbius' work
remained unknown to engineers for a long time, his approach being too general
and its presentation too abstract to be understood.

The second episode in these brief historical notes 1is a paper by
Maxwell (1864) which also failed to have a great impact at the time of igs
publication: Maxwell's objective was to introduce a method for evaluating bar
tensions and nodal deflections of frameworks Yin the least complicated manner

.. especially in cases in which the framework is not simply stiff but is
strengthened ... by additional connecting pieces". The Introductory section of
the paper 1s for present purposes the most interesting; it contains a

relationship widely known in framework design as Maxwell's rule: "a framework

of n points in space requires in general 3n—6 connecting lines to render it
stiff"., Two qualifying statements deal with exceptions to it:

(i) if a smaller number of rods is sufficient to obtain a rigid assembly,
one or more of the connecting lines must have either maximum or minimum
length, _

(ii) the stiffness of frameworks like the ones envisaged in (1) is "of an
inferior order™ in the sense that infinitesimal applied forces may produce
finite displacements; in Maxwell's words: "a small disturbing force may
produce a dlsplacement infinite in comparison to itself™.

These statements entirely agree with Mdbius' analysis; it is to be noticed
that (ii} is a fairly expliecit warning agéinst using frameworks of this sort.
Apart from a reference teo Clapeyron's Principle of Conservation of Energy as

the basis of the new method 'proposed, Maxwell's paper 1is entirely




self-contained,

& third author whose contribution to the theory of indeterminate
structures was very significant is Mohr (Timoshenko, 1953, Charlton, 1982);
indeed his way of using virtual work to obtain the compatibility equations of
a redundant framework (Mohr, 1874) is a guideline for the analysis of the
'fitted' components of load which will be introduced in Chapter 6. In a
following paper; in a section on "the relationship between rod lengths of a
Pramework" which is not connected to a foundation, Mohr (1885) proved that
the following condition has to be satisfied by any system of bar tensions in

equilibrium without external loads:
¥ tplp=0 (2.1)

where‘tp is the tension in bar p, 1p

number of bars 1n the framework. This 1s proved by considering any

is the length of bar p and b is the total

selfrequilibrated system of bar tensions, a set of bar elongations in which
the ratio between bar elongations and lengths is constant for all baﬁs, and
using virtual work. Equations like (2.1) and an equal number of compatibility
equations have to be satisfied by the bar lengths and elongations of a
redundant framework, but in 'simple' frameworks — with no redundant members =
both lengths and elongations are independent of each other. The effects of
altering the length of one particular rod of a framework, while all the
remaining bar lengths are kept constant, are then analysed in the two cases:
b=2n-3 The elongation of one particular bar of a 'simple' framework is
clearly not unlimited; its bounds depend on the length and arrangement of the
remaining rods. When the chosen bar has reached its maximum {or minimum}
length the other b~1 bars, the lengths of which are kept constant, resist any
further extension (shortening): the given framework is then able to accept a
self~equilibrated system of bar tensions. A consequence of the length of one
bar being maximum (or minimum) is that the chosen bar does not change its
length if an infinitesimal deformation of the framework is considered'in
which the remalning bars keep their length constant. The framework 1s
therefore not stiff: it is an infinitesimal mechanlsm, although it contains
the required number of bars. Mohr used virtualrwork also to show thaﬁ any load

condition that does work for the infinitesimal displacement in which no bar

i0




elongation occurs will produce infinitely large rod tensions. This result is
not to be taken literally: rods of real assemblies are not infinitely rigid,
80 the assembly would deform a 1little bit when loaded and then require only
finite rod tensions to carry an arbitrary load. Hence, he concluded, such
frameworks are "not capable of resistance and obviously unsuitable for
practical applications". An example of this is the framewocrk in Fig, 2.1, which
has n=6 and b=9, hence 2n-3=b and this structure has in general no redundant
bars; the exceptional case is obtained if bars 2,5,9 meet In one point, in
which case bar 9 - say - is redundant. '

b<2n-3 Frameworks of this type can in general take arbitrary shapes,
yet the procedure described above can be repeated in order to obtain
assemblies which, apart from infinitesimal mechanisms, possess a unique
configuration and can sustain a self-equilibrated system of rod tensions, The
simplest class of examples 1is given by any closed chain of b sides: here
b=n<2n-3 for b>3; if any bar of the chain is given a length equal to the sum
of the lengths of the remaining bars, its length is obviously maximum. A more
interesting example is shown in Fig, 2.2, i.e. Fig. 3 of Mohr (1885). Here
b=12<2n-3=13; therefore the framework is in general a mechanism with one
degree of freedom and no redundancies. But self-equilibrated bar tenslons can
be assigned if the three intersection points of the rods (1,3),(5,7),(9,10) and
(2,4),(6,8),(10,11) respectively lie on straight lines. These conditions ensure
that, once the tension in bar 9 - say - has been prescribed and those in bars
1,2,3,4,5,10,11,12 have been evaluated from nodal equilibrium, the remaining
part of the framework is in equilibrium. Notice that the number of conditions
to be prescribed is given by (2n-3)-(b-1)=2, '

The last contributions to be discussed in this section are by Féppl. His
books (F&ppl, 1892, 1912) were 1in their day much used in the teaching of
structural mechanics to young engineers all over Europe. In his élassical
treatise Foppl (1912) presented a wide range of problems together with
available methods of analysis; two of its sectlons dealt with the problems of
statical and kinematical indeterminacy. The first one, Section 39, is part of
a chapter on plane frameworks and 1s entitled "Analytical investigation of an
exceptional case,

The equilibrium equations of node i, see Fig. 4.1, are written in the form:

T




Fig. 2.1 Plane assembly with n=6, b=9. Mohr (1885) showed that it is
statically and kinematically indeterminate if the bars joining

the triangles ABC and A,B;C, meet in one point,

7
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Fig, 2,2 This plane assembly, although 1t is a statically determinate
structure with 1 mechanism in most of its configurations, can

sustain a state of self~equilibrated tensilons
mechanisms in the geometry shown. From Mohr (1885).
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) (BFp/Bxi)x(tp/le)=fix
P,q (2.2)
) (9F,/0Y; )% (t,/21,)=F;

y
Byq

where the functicn Fp has been introduced for bar p, connecting nodes i and j

of the framework:
= .- A 2 .- . zr za
Fo=(Xg=X )2+ (Y=Y )21 2=0 (2.3)

As the partial derivatlives of F

X

p with respect to nodal coordinates other than

s xj, Y. vanish "of their own accord”, equations (2.2) can be easily

i’ .
converted to ihe more usual expressions such as those in Section 4.1.

By writing equations like (2.2) for each node of thé framework, but
missing altogether the one which coincides with -the origin and writing only
the second equation for a node lying on the x axis, a system of 2n-3(=b)
equilibrium equations in the b unknown bar tensions is pbtained.‘rhe analysis
of the determinant of the system can indicate whether or not a unique set of
bar tensions can be cbtained from arbitrary given components of external

force:

BF/BE 1 urearas.. O, /0L,

L R I L B B R B B 3

A= (2.4)

L R R N N A LI I I N B R B A WY

PFi/agzn_Boanc.olan/aEZn_B‘

here £ denotes an arbiltrary nodal coordinate, The effects of arbitrary bar
elongations on the geometry of the astructure are also‘ analysed.

Differentiation of (2.3) provides the compatibility relationship:

(Xi—xj)Gxi+(xjrxi)6xj+(yiryj)6Y1+(erYi)6Yj= lpdlp (2-5)

where dxi,".r are ‘'small' changes of nodal c¢oordinates and 6lp is the
-corresponding elongation of bar p. The compatibility equation above can be

also written in the form:
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E (an/agi)agi= 21,61, ' (2.6)

The complete system of b(=2n-3)} compatibllity equations in the 2n-3 unknown
displacements has a unique. sclution for any set of bar elcongations if the

determinant A' of the system does not vanish

BF | /8E veennneen OF /855 o

A'g * e e e EN IR bEI BRSNS (2.7)

9Fy/3E  + v v eern 3P /3653

In particular, if all &1's are set equal to 0 and A'#0, all nodal displacements
have to vanish, hence "no infinitesimal displacements are possible without
bar elongaticns of the same order, l.e. the framewcrk is stiff". Having then
noticed that A'=A, the coefficient matrices being the transpose of each other,
F8ppl states the theorem: "A framework which contains only the necessary
number of bars and ls stiff, is also statically determinate. And vice versa,
it 1Is stiff if it is statically determinate'.
' Section 45 of Fdppl (1912) makes use of the above theorem, but not of the
analytical method just described; it deals with an exceptional type of
Schwedler's cupola. According to Timoshenko (1953), Schwedler first suggested
inr1866 the layout shown in Fig, 2,3 for a reticulated dome. This layout was
successfully modified by Fdppl to cover a large market hall in Lelpzig; an
extenalve description of this type of construction s available in Foppl
(1892, 1912). The exceptional reticulated dome that F8ppl described in 1912 is
discussed in detail elsewhere in this thesis; here it is enough to say that
the framework rin Fig., 2.3a 1s not of the type envisaged in the theorem above.
Although it "contains the necessary number of bars", it 1s a statically
indeterminate mechanism. On the other hand, the framework shown in Fig. 2.4b
is stiff and statically determinate., Fdppl knew that only an even number of
sides would lead to the unexpected features described above.

Finally, Fig. 2.5 shows the chronological relationship between the works
described above and several major contfirbutions to ther theory .of redundant
structures, in which the former are embedded, The list is derived from

Oravas & McLean (1966) and modified according to remarks by Charlton (1982).
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Fig. 2.3

b)

Plan views of modified Schwedler's cupolas which have some rather’
special properties. Thils version of the cupola is a statically
indeterminate mechanism if it has an even number of sides, see a).

Otherwise it is statically determinate and rigid, see b},
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(1)

M&bius (1837)

Maxwell {(1864)

Mohr (1885)
Foppl (1892)

Féppl (1912)

Fig. 2.5

(2)

Bossut (1771)

Euler (1774)

Navier (1826)

Menabrea (1857)

Clebsch (1862)

Castiglianc {1873)

Mohr (1874)

pointed out the statical indeterminacy of
beams on more than 2 supports.

solution of a rigid table on U legs,
supported by an elastic foundation.

analysis of continuous and encastre beams
under peint loads. Analysis of a
pin-jointed framework consisting of n
(n>2) elastic bars connected to a rigid
foundation at one end, and to the only ncde
of the framework at the other: the nodal

displacements were taken as the unknowns

of the problem,

solution of statically indeterminate
problems by using the principle of least
work. In the following years Menabrea gave
several derivations of his principle, but
all of them were only partly correct.

general method for analysing any truss by
taking the hinge displacements as unknown
variables. Thus the number of equations
and of unknowns are always equal.

gave a correct and general -  proof of
Menabrea's principle. Castigliano also
formulated his first and second theorems.

used virtual work to obtain equations of
compatibility.

Column (1): chronological arrangement of work described in
Section 2.1. Column (2): more general contemporary developments
in the theory of redundant structures. Detailed references for
column (2) are available in Oravas & McLean (1966) and Charlton

(1982).
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2.2 A fundamental paper by E.KBtter and some related work (1900-1940)

The first paper entirely concerned with the statical and Kinematical
indeterminacy of pin-jointed frameworks was published, to the author's
knowledge, in a book in honour of Miller~Breslau (K&tter, 1912). The present
interest in this paper is not merely historical: apart from the general
theorems on peolygonal frameworks that will be described immediately, K&tter
Introduced an analytical way of evaluating whether or not a plane assembly
with b<2n-3 is rigid. Kdtter's paper "On the possibility of connecting rigidly
n points lying in a plane, or in space, by fewer than 2n~3, or 3n-b6,
inextensible rods" starts from a kinematical investigation of frameworks
like the ones in Fig, 2.6, made of Inextensible rods, and proves that a
2k-sided polygon braced by diagonal members which connect opposite ver-ticesE
is rigid if opposite sides are parallel. A similar condition holds for
assemblies consisting of two k~sided polygons connected by bracing members,
Fig. 2.7; an ad hoc sign count has to be devised in order to deal with such
speclal cases as Fig. 2.8, Removing the hypothesis that opposite sides should
be parallel Kotter was able to use the theory of funicular pelygons to
demonstrate (for k»2) tﬁe theorems:

"Any framework consisting of the sides of a 2k-sided polygon A1A2 vee Azk
and of 1ts main diagonals A1Ak+1’A2Ak+2"'"AkA2k’ see Fig. 2.6,' is
selfstressable if and only if the points in which opposite sides of the
polygon meet 1lie on a straight line". A proof of this based on a direct
equilibrium argument is given in the caption to Fig. 2.6. And:

"Any framework consisting of the sides of two k-sided pelygons A1A2.uAk;
Ak+1Ak+2'"A2k and the connecting members A1Ak+1, A2Ak+2”'”ﬁkﬂ2k’ see Fig, 2.7,
can be selfstressed if and only if the points in which two corresponding
sldes of the two k—sided polygons meet lie on a straight line". Note that the
theorems just stated are not as powerful as the ones mentioned above because
a framework of n nodes and b rods, with b<2n-3, which is selfstréssable may be
rigid, apart from at least 2n-b-}4 infinitesimal mechanisms, as will be shownh
later on.

With the aim of extending the treatment by F&ppl described in Section 2.1
to the more generél case in which b22n-3, and following Mohr's remarks ~ whigh

he extensively quoted - on the rigidity or lack of it in frameworks, Kdtter

1 Two opposite vertices are 1 and i+k,e.g.A1 and A1+3 in Fig, 2.6,
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Equilibrium of bar A,A, requires that

LT WL WYL W s

this condition can be written also as:

LW RAT WIS W LT W 1)

Similarly, the conditions of equilibrium of the other diagonal bars A;A; and
AjA, are:

t + =s= + 3
Bty Tagn T (B, Toan,) (11)
tAaAu tAsAlﬂ. (tA3A2+tAsA5) ' (11)

As all the resultants on the right-hand- and left-hand-sides pass through B,,
B,, B, respectively, they have also to lie on B;B,B; if the 3 conditions are to
be satisfied.

The equilibrium conditions of the sides of the hexagon are also satisfied if
the resultant forces on the right-hand and left-hand-sides of (i), (ii) and
(iii) lie on B,B,B, and are equal in magnitude to a common value t. The
magnitude and sign of t is the only way of altering the selfstress in the
framework.

Fig. 2.6 The plane structure shown is selfstressable according to the
first of Kdtter's theorems. In the demonstration above tAxAz”"
indicate the actions of the bars A;A,,... upon the nodes Aj,...

18
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Fig, 2.7

¢

| J

/
Plane framework consisting of two quadrangles (k-sided polygons
with k=U) connected by the diagonal members A,A,,... According to
the second of Kbdtter's theorems, assemblies made out of two

k-sided polygons are selfstressable if they satisfy the
condition shown in the figure.

_ Az 1\1
a) (b)

Plane assemblies consisting of two U-sided polygons; their
rigidity was shown by Kdtter (1912). This author introduced an ad
ho¢ sign count which allows to extend to (b) the theorems,
described in Section 2.2, that apply to (a).
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introduced for each bar p connecting nodes 1 and j of the framework

{coordinates Xy,¥y and Xj,Yj respectively) a function

Fo= 200X )2 (Y=Y )3l 2] (2.8)
Note the small discrepancy with Féppl's definition (2.3). Kétter also defined

the function
¢=G1F1+-..+Ube (2-9)

where the coefficients Tqeenr0)y do not vanish simultaneocusly. If the length of
one bar of the framework — bar b, say - is to be either maximum or minimum,
the lengths of the remaining members being assigned, the following (b-1)+2n

equations have to be satiafied:

Fp=0 p=(1,...,b=1) (2.10a)

39/9£;20 1i=(1,...,n), &=x,¥ (2.10Db)

The first group of equations expresses the condition that the lengths of the
first bel bars are fixed; the remaining 2n equations ensure that the length of
bar b of the framework is stationary for any infinitesimal change of
configuration; this condition is necessary for it to be either maximum or
minimum. Equations (2.10a) are self~evident., An easily understandable
explanation of (2.10b) 1is obtained by observing that (Maxwell, 1864,
Mohr, 1885) the geometrlical condition of bar b having maximum or minimum
length, in which case the assembly resists any further elongation of that bar,
is equivalent to the statical condition that the assembly is selfstressable,
i.e. a set of non-vanishing bar tensions in equilibrium without external
forces can be prescribed. Equations (2.,10b) are in fact the 2n equilibrium

equations of the structure when no external locads are applied:

~

5 _
30/ ;=] cp(an/agi)=Z 0,(85785)=0 .
]3=1  P,q
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here op=(tension‘coefficient of bar p)=tp/lp and the last summation 1s only
extended to rods connected to node i. Notice that the function ¢ defined
in (2.9) can be given a more physical interpretation if each rod of the
assembly 1s pretensioned to a certain level; any small deformation of such a

framework, described ‘by the nodal coordinates X1”."Y of the displaced

n
assembly, involves a change of Total Potential Energy equal to the change in
strain energy because there are no applied loads. This 1s equal to the value
assumed by ¢ in the new configuration if terms of order higher than 1 are

neglected:

b b
JO I R %X (tp/1,) (X=X 5)2+ (Y=Y )21 2]
p=1 p=1
b b
(2.11)
SV CVZI] IS HOL NG D
p=1 p=1

where 6lp indicates the change of length of rod p in consequence of the

imposed deformation. Therefore (2.10b), equivalent to the condition &¢=0,
impose the condition that the Total Potential Energy.of the prestressed
assembly 1is stationary 1in its initial configuration. Having noted the
difficulty of solving {2.10), Kétter differentlated Fp in (2.8) in a way
similar to Foppl's, see Section 2.1, and obtained the b compatibility
equations constraining any infinitesimal displacement of the framework which

is to preserve the bar lengths:
GFp=(Xi—Xj)(6X1-6X3)+(Y1~Yj)(GYirGYj)=0, p={(1,..b) (2.12)

These equations can admit a non-trivial solution if "each determinant of

order b obtained from the matrix

BF /8K v e ennsnn OF/BY
e (2.13)

3F /8K e uensn s BF/BY

vanishes". This coincides with a theorem by F&ppl in the case b=2n-3,
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From the above considerations, and follewing an intricate procedure,
Kdtter demonstrated the theorem: "if a framework of n nodes and b (<2n~3)

inextensional rods 1is rigid, then it is selfstressable and it has 2n=b-2

infinitesimal internal mechanisms; whilst in general it would have 2n-b=3

infinitesimal (and in fact finite) internal motions".

The last theoretical development was the following method te check
whether or not a framework of the type described above 13 rigid "according to
the rules of the calculus of variations": the second-order differential of ¢
is to be computed for all possible displacements of the framework which
satisfy (2.12) but are not rigid movements of the whole framework 1ln the
plane. This is equivalent to the Total Potential Energy being minimum (or
maximum, but in thils case the sign of the prestressing tensions would have to
be changed). Here:

b
§28=0,8%F + .. +0p8%Fp= =] o [(6X;~6X()3+(6Y;~6Y5)%]  (2.1H)
p::

1

M=

If 620 assumes only positive values then the framework Is figid. This is
because 1If one displaces the assembly obtained by removing red b, the
distance between the end points of that rod always increases if O, agrees in
sign with §2¢; it always decreases in the épposite case, Any other case can be
treated in a similar way, and if §%® is positive for some displacements from
the original configuration but negative for others, then "a more detailed
investigation would show that there must be displacements in which the

distance remains unchanged". In short the following cases may be obtained:

§2¢>0 ==> the framework is rigid

n <O n T
§20=0 ==> the framework is not rigid (2.15)
§2¢=0 ==> "the question remains unsolved"

Similar results will be obtalned in Chapter 4 feollowing a more physiecally
intuitive approach. The analytical method described above, although known to
some oerbtter's contemporaries In Germany and Italy, has been never_applied
~— to the writer's knowledge - to any other structure than the parallelepiped

of Fig., 2.9 which was studied by Kdtter in the last section of his paper.
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Pollaczek~Geiringer followed the steps of Féppl and Kbtter to classify a
wide range of plane (Pollaczek~Geiringer, 1927) and space frameworks
(Pollaczek-Geiringer, 1932), but she obtained the coefficients of {2.13) from
straightforward equations of equilibrium. In a section containing various
examples she noted the curious behaviour of the mast structure of Fig. 2.10
which has recently been investigated by Tarnai (1980a).

Having come across Kdtter's work, Levi—Civitarand Amaldi added to the 2nd

edition (1949) of their Treatise on Rational Mechanies first published in

1929 a new section which presented the "analytical circumstances in which
singular frameworks may be obtained"; the authors themselves referred to this
as the most relevant addition to that new edition. Levi-Civita & Amaldi
(1949) briefly discussed the algebrical condition b=2n-3 that has to be
satisfled in general by stiff plane frameworks but they also observed that
any polygon in which the length of one bar is equal to the sum of the lengths
of the others cannot be deformed irrespectively of the above rule, These

authors suggested, as a simple analogy for this, the one equation x%+y2=0

which determines the values of two parameters, because its only real soclution
p=0! p= ( 1 J""b)

may be able to determine uniquely 2n~3 node coordinates of a plane framework,

is x=y=0. Similarly a system of b equations.of compatibility F

which is therefore 'stiff'. This happens if the initial configuration of the
framework corresponds to a point of either maximum or minimum in the linear
combiﬁétion of the Fp‘s such that its Taylor expansion has no first order
term.In spite of their correct mathematical formulation of the problem, these
authors failed to recognize that the polygons with k=3 (see the beginnlng of
this section for a definition of k) are also covered by Kbtter's theorems.

In the same period the geometers Bricard (1897) and Bennet (1912)
developed Cauchy's work on the rigidity of polyhedra: see Bricard's paper for
a lisf of references to earlier workers. Bricard showed by means of elegant
kinematical arguments that there exist concave octahedra of three different
types which have one finite motion; Bennet's paper contains a cglassification
of the kinematical properties of all possible octahedral mechanisms, but the
terminology and techniques used by Bennet lie beyond the boundaries of the

present work.
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Fig. 2.9

Fig. 2.10

A

LA
Ao 7

Three-dimensional framework censisting of a parallelepiped with
its body diagonals. Kbtter (1912) showed that the above structure
is statically indeterminate by evaluating the determinant of 1ts
equilibrium matrix.

Three~dimensional  mast structure first analysed by
Pollaczek~Gelringer (1932), who noted that the- top part can
freely distort as Schwedler's cupola of Fig. 2.Ma.
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2.3 Instantaneously-rigid and quasi-unstable assemblies

During the 1960's several cable structures were built in Russia
(Rabinovich, 1962}, At first sight this structural type may seem unrelated to
the assemblies of pin~ended rods discussed so far, but Rabinovich (1962)
recognized that most cable structures are "kinematic chains with many degrees
of freedom which, as a result of a careful selection of the geometrical
parameters, behave like systems which are only able to undergo infinitesimal
movements”, This stimulated new interest in the recognition/analysis of
statically and kinematically indeterminate structures. It is clear that
Rabinovich did not regard these peculiar structural configurations as in any
way awkward, and he took a fresh view of the problems posed by them. This is
possibly the reason why some new definitions were introduced., Thus an
assembly is inatantanecusly rigid if it has a positive number of internal
mechanisms but nevertheless can only undergo infinitesimal configuration
changes If its bar lengths are to be preserved. How does one check whether or
not a given assembly with m internal mechanisms is instantaneously rigid,
according to Rabinovieh? Starting from the framework of Fig. 2.11a, which has
four finite mechanisms, move node F the maximum distance away from A: the
linkage ABCDEF now lies on a straight line (Fig. 2.11b} but still has four
finite mechanisms. Now fix node F to remain 1in 1its present position
(Fig, 2.11¢c): this assembly is_instantaneously rigid with four infinitesimal
mechanisms. The number of mechanisms of an assembly can be obtained in

general, i,e. not in special cases, by using the formula:
m=2n~b-e¢ (2.16)

where n, b have the usual meanings of number of nodes and bars, and ¢ is the
number of external constralnts. For the structures of Fig. 2.11 this formula
gives m=2x6-5-3=4 for cases a) and b), and m=2x6~5-4=3 for case c). From
examinétion of these examples and of similar ones Rabinovich concluded that
an instantanecusly rigid assembly has to have at least one more mechanism
than the corresponding non-singular assembly; Hence he enunciafed the
following empirical criterion of instantanecus rigidity: a pin-jecinted

aésembly which has m mechanisms according to (2.16)} is instantaneously'rigid
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if all the structures obtained by 'freezing' m hinges of the original
structure have at least one mechanism, Clearly this criterion 1is only
suitable for demonstration purposes because of the sheer amount of work and
‘the difficulty of finding out the number of mechanisms of all the
configurations to be considered. Rabinovich was aware of the work by Mohr
described in Section 2.1, and Indeed he reproduced and discussed Fig. 2.2 from
Mohr (1885); he also observed that Mohr had not discussed the problem of
instantaneous rigidity and that, although all Instantaneously rigid
assemblies are selfstressable so that one may think of using this property as
a criterion to characterise them, this condition is not sufficient as the
structures of Filg. 2.12 demonstrate. Still following Mohr's ideas, Rabinovich
proposed two methods of creating instantaneously rigid assemblies: either by
choosing any two unconnected nodes of an existing structure, moving them to
the maximum distance allowed by the existing links and finally connecting
them with a rod; or by building assemblies in which all the instantaneous
centres of rotation lie on a straight line. Thls method leads to frameworks
that behave like closed polygons with the length of one side equal to the sum
of the lengths of the others.

In the end the paper does not give a rigorous answer to the question
posed at the beginning of this section, apart from rather general statements
on the appropriateness of having "a preponderance of tensile bar tensions".
This kind of remark is rather typlcal of this paper, which constitutes an
‘early' attempt to tackle a class of structures with exceptional
configurations; Rabinovich developed his own ideas intuitively when he found
that the existing literature was not helpful.

Rabinovich's work was followed by a series of papers by Kuznetsov {1973,
1975, 1979) which laid down general schemes for classifying space structures
and analysing the. response of kinematically {(but not statically)
indeterminate frameworks to applied loads. Kuzﬁetsov (1979, 1979) aimed at a
completely formalized statical-kinematical analysis of an arbitrary spatial
structure that could be performed by a computer; he also extended his
analytical method to systems containing unilateral constraints (i.e elements
which can ‘only carry tensions of one sign, e.g cable segments).

Kuznetsov (1975) introduced the following structural categoriesé
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(c)

Fig., 2.11 Plane linkages discussed in Section 2.3. From Rabinovich (1962).
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Fig, 2,12 In the Theory of Machines both configurations In solid lines
would be called dead points of the plane mechanisms displayed. It
is obvious that neither of them satisfles a condition of

maximum/minimum length and that they are not instantaneously
rigid structures, see Section 2.3,

[
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(i) Stable, assemblies which possess a unique configuration and
therefore can equllibrate any 1load applied to them by means of finite

tensions. These would be referred to as kinematically determinate in the

terminology adopted in this dissertation.

(ii) Quasi-stable, assemblies which possess a unique configuration if

thelr bars are regarded as Infinitely rigid and are unable to equilibrate
arbitrary applied loads unless a small distortion ls allowed; in which case

they become stable. These assemblies are kinematically indeterminate (with

only infinitesimal mechanisms). A (small) distortion of the initial geometry
of an assembly belonging to this class is usually sufficlent to make it
stable,

4

(iii) Quasi-unstable, assemblies satisfying all the conditions of (1ii)

but which do not become stable after a small distortion. In fact they beccme
unstable (see (iv), below) on distortion. The only substantial difference
between this group and the previous one is that (2.16) would give m>0 for
structures belonging to (iii); they are similar in all other respects and are

also kinematically indeterminate (with infinitesimal mechanisms).

(iv) Unstable, structures which do not possess a unique configuration,

These are also kinematically indeterminate, but at least one of their

mechanisms is finite.

The examples shown in Fig. 2.13 clarify the above classifiecation.

It will be shown in later chapters that structures from the groups (ii)
and (iii) are rather similar in their response to applied loads: in fact they
all require finilte bar elongations in order to displace from their original
configuration by a finite amount {as if they were kinematically determinate).
Yet Kuznetsov's scheme regards them as substantially different; quasi-stable
structures are entirely acceptable because only a small deformation is
reqﬁired to make them stable, which is not the case for the quasi-unstable
cnes,

Kuznetsov {(1979) then followed Fdppl and Kdtter in the derivation of the
compatibility conditions of a given assembly, see (2.8) and (2.10a), énd
linearized them by using Taylor's expansion to end up with (2.13). According
to the number of elements two situations are possible:

A three-dimensional assembly has "sufficient constraints" if 3n-6sb, It

belongs to groups (i), {(ii) if-a sufficient number of them are independent,
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i.e. if either the rank of (2.13), modified to include z-coordinates as well,
equals 3n-6 (i) or the number of independent compatibility conditions, now
considered in full instead of their linearized versions accounted for by
(2.13), (il); ofherwise it belongs to group (iv). The difference between these
conditions will be clarified in Chapter 5 when approximations of different
orders of the conditions of geometrical compatibility will be used In the
study of some examples,

An assembly has "insufficient constraints" if 3n-6>b. It belongs to group
(iii) if the rank of (2.13) is smaller than b and a quadratic form equivalent
to (2.14) is either positive or negative definite. In all other cases the'
assembly belongs to group (1v}. Unlike Kdtter, who firat considered this
quadratic form, Kuznetsov recognized that this is the "energy increment
(accurate to terms of second order) of the system", equal to the work done by
the prestressing forces over the corresponding-displacement, and understocod
that the test proposed was just a way of checking the stability of the
equilibrium in the initial configuration.

With reference to assemblies containing unilateral members, Kuznetsov
(1975, 1979) first looked at the substructure made out of 'bilateral' elements
only in order to work out which displacements need to be prevented by the
unilateral elements. As the only effective elements are those ones for which
the corresponding compatibility condition is satisfled as an equality, a
stable system is obtalned if the only possible solution of the system of
linear inequalities assoclated with the unilateral members is trivial; hence
no nodal displacements are allowed. Kuznetsov (1979) developed an effective
but rather lengthy procedure to perform this calculation, the details of
which will not be given here; From the developments of Chapter ¥4 It will be
clear that a much more efficient algorithm can be devised. In an earlier paper
Kuznetsov (1973) described the response of assemblles belonging to group (iv)
to arbitrary applied loads which, he argued in a way analogous to Chapter 6 of
the present work, can be uniquely decomposed into an "equilibrium load" which
does not produce any change of configuration of the structure but only
changes the internal forces, and a "supplementary load" that 1s responsible
for small changes of configuration, He also described a method of doing this
which requibes "one or two iterations™ provided the supplementary part of the

applied load 1is relatively small; otherwise the method would not work. No
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applications of these ideas were proposed, and indeed it is unclear whether
they were tested at all; nevertheless this work has to be regarded as the

first step in the approach followed in Chapter 6.

2.4 Development of a comprehenslive ¢lassification

Calladine (1978) went back to the paper by Maxwell (1864) discussed in
Section 2.1 for an explanation of the mechanies of dne of Fuller's tensegrity
assemblies and, in so doing, he introduced a novel way of looking at
prestressable systems. The crucial point is the introduction of a new version
of Maxwell's rule, which includes all possible special cases. For spatlal

frameworks not connected to a foundation the rule is:

In~b~6=m—3 (2.17)

with: n=number of ncdes

b= " bars W
= " independent infinitesimal internal mechanisms
g3= " states of selfstress.

A relatioﬁship like (2.17) should have been formulated at the time of the
earlier developments described in this chapter; but only Buchholdt, Davies &
Hussey (1968) had previously derived it. These authors introduced it in the
context of a study of the behaviour of cable nets, but they did not use it for
any practical purpose, Rlgorous derivations of (2.17) are given by Calladine
(1978) and in the above paper by Buchholdt et al,; it will also follow from a
rather obvious dimensional relationship between the four vector subspaces of
the equilibrium matrix that will be introduced in Chapter U.

Formula (2.17) does not 1In itself solve the problem of correctly
classifying any pin=jointed framework according to 1ts statical and
kinematical properties, expressed by the numbers s and m, respectively, but it
introduces, so to speak, a correct and clear framework within which one has to
operate. As an example, Calladine studied one of Fuller's tensegrity
structures (see Fig, 2.14), This assembly is obtalned by intersecting a
tetrahedron with four planes perpendlcular to its axes of three-fold

symmetry; the truncated tetrahedron obtained in this way had all its edges
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Fig., 2.13 Examples of the four classes of structures considered by
Kuznetsov (1975, 1979). The broken line illustrates that -on
distortion- (1i)->(i) and (iii)->(iv). From Kuznetsov (1979).

Fig. 2,14  "Tensegrity" structure investigated by Calladine (1978). The 18
external members have equal length, say =1, and the 6 inner
diagonals have also equal length, =2.25. A photograph of a
physical model of this structure is in Fig. k8 of Marks (1960). .
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made out of wires in Fuller's own model (Fuller, 1975, Marks, 1960). The
structure was completed by adding six internal struts. The first point to be
made, here, is that Fuller used to build all of his tensegrities with the
outside segments made out of wire and therefore an initial state of
pretension in all wires (and consequent precompression in the inner struts)
was an essential ingredient of the physical structures: nevertheless all of
this is a rather unimportant detail for the purpose of a theoretical
investigation. In fact Calladine's paper refers to a physical model simply
made out of plastic rods and rubber joints. The structure of Fig. 2.14 has

n=12 and b=24; substitution of these quantities into (2.17) yields:

m-s=6 (2.18)

By inspection of this model, which had all the 'wire' lengths equal to 1 and
all the 'strut' lengths equal to 2.25, only one state of selfstress was found.
The assembly is therefore statically and kinematically indeterminate:
s=1 => m=7, the implication being a consequence of (2.18). In fact Calladine
verified that his model had seven independent mechanisms, but he also found
that prestress had a stiffening effect on all of them; more generally, he
concluded that prestress is necessary in order to build kinematically
indeterminate frameworks with 'first order' stiffness in all modes.

The procedure described above constitutes a partial answer %o the
question posed at the beginning of Section 2.3; the same author pursued this
approach even further in the study of the behaviour of saddle-shaped cable
nets (Calladine, 1982).

Tarnal studied in detail various space trusses of the type shown in
Figs 2.4 and 2.10. It was remarked in Section 2.2 that the ring~like assembly
of Fig. 2.4a has been known to be statically and kinematically indeterminate
since the times of Fdppl; Tarnai (1980a) evaluated a closed form expression

for the determinant of the equilibrium matrix of F&ppl's ring, for a more

general layout made out of a regular horizontal k-gon connected by 2k bars to

a rigid foundation set out as the k vertices of an identical k—gon. The top
k—gon was rotated through an angle & relative to the bottom one, see Fig. 2.15.
It turns out that, if one considers only 622w, the two configurations obtained

for 9;=w(k+2)/2k and 6,=m{3k+2}/2k are statically and kinematically
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indeterminate, with s=m=1; but they do not have any planes of mirror symmetry
which, as will be demonstrated later on, 1s a crucial requirement if the
mechanism 1s to be able to undergo 'large displacements'. If k is even, the
determinant of the equilibrium matrix also vanishes 1In twoe other
configurations: 6;=v/k and 6,=w(k+1)/k. Tarnai pointed out that the special
feature of thes? last configurations is that they do admit planes of mirror
symmetry and therefore can undergo large inextensional displacements, It is
easy to convince oneself that the Joints of ‘even numbers ecan move, say,
towards the inside of the k-gon while the odd ones move outwards and that in
30 doing the nodes describe paths lying in the planes of mirror symmetry;
hence the mechanism cannot tighten up. For k=4 the configurations 6, and By
-are shown in Fig. 2.16. In a more recent paper Tarnal (1984) has shown that,
provided that there exists at least one plane of mirror symmetry which
contains nodes i and i+k/2, even an irregular k-gon is a finite mechanism,
This result is unexpectedly simple, if one compares it to Kdtter's theorems in
Section 2.2,

The structure shown in Fig. 2.16 and having the configuration 0, was also
analysed and tested by Hoff & Fernandez-Sintes (1980).

Tarnai (1980a) also considered towers built from a number of rings having
the configuration O3, See Fig. 2.10; the equilibrium matrix of this assembly
has full rank if the number of sides of the constituent rings is odd, and in
this case the resulting tower is statically and kinematically determinate.
But an even number of sides leads to s=m=1: the statical indeterminacy is
located in the bottom ring and the kinematical indeterminacy appears in the
top one, while the remaining rings are Statically determinate and rigid. This
result is clearly independent of the number of constituent rings. Tarnai
remarked that, unlike proper tensegrity structures, "it seems that prestress
does not give stiffness" to the tower, This conclusion leads to some conecern
when one sees bractical realizations of such towers in Figs 7 and 8 of
Makowski {1966},

The work described above provided a firm foundation on which .an
analytical framework could be erected; C.,R, Calladine and the present. author
presented communications along these lineé at the XVI IUTAM Congress and the
III International Conference on Space Structures. Chapters 4 and 6 will

provide details of these communications,
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Fig, 2.15 Elevation and plan view of the bar forces acting on joint no. i of

the 'ring' assembly studied by Tarnal (1980).

Elevations and plan views of the only symmetrical configurations

Fig. 2,16
in which the ‘'ring' of Fig. 2,15 1is both

kinematically indeterminate. From Tarnai (1980).
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Research along similar lines has been made by Besseling. In an attempt to
foster the use of the force method of structural analysis in some plastic
analyses, Besseling (1978) first formulated the basic concepts of the
analysis 1in terms of Linear Algebra and gave a description ({(but very
compressed indeed) of the subspaces related to the equilibrium/compatibility
matrices. The bases of the relevant subspaces appear to have been guessed
rather than computed in a systematic fashion; the paper also discussed how to
use the above subspaées to perform limit and elasto-plastic calculations., A
deeper explanation of the Linear Algebra ideas was given subsequently by
Besseling (1979, 1981}, who also compared this approach to other numerical
methods available, It is noteworthy that section 7 of Besseling (1979) has a
formula for checking whethgr a framework with one or more mechanisms is
'stable', i.,e., if a suitable state of prestress can be found to stiffen the
mechanism; this formula coincides in essence with (2.15) obtained by Kdtter in
1912 (see Section 2.2) and by Kuznetsov in 1975 (see Section 2.3)}. Chapter 4
of this dissertation will discuss the problem in more detail,

Motro (1983) followed a different approach in his doctoral thesis. In an
initial qualitative study he used the theory of graphs to investigate fhe
topological properties of tensegrities. A rather separate and more
practically oriented study of a simple tensegrity followed: the "Simplex" is
obtained by transforming an equilateral triangular prism, (see Fig. 2.17) the
diagonals of which are simultaneously elongated until their length reaches a
maximum value., This structure has n=6, b=12; it is therefore a statically and
kinematically determinate truss in most configurations. From {2.17) m=s, Motro
showed fhat a selfstressable configuration-could be obtained by means of
equilibrium considerations, i.e. he looked for values of 6 in which a state of
selfstress 1s admissible, which leads to 6=t/6. And he obtained the same
result by means of kinematical considerations, i.e. by maximizing the lengths
of the diagonals. He compared thils solutlon in closed form to the results
given by Dynamic Relaxation, see Fig. 2.18: this numerical method has proved
rather effective in solving a large class of problems concerned with finding
an initial shape, according to Webster (1980). A coinelse introduction to
this method can be found in Day & Bunce (1969), '

The performance of the "Simplex" under load was studied by Mcotro both

experimentally, see Section 6,5, and numerically by means of a gecmetrically
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Fig, 2.17 Formfinding of "Simplex": a) 1initial configuration, 6=0.
b} selfstreassable conflguration, 6=w/6,

Fig. 2,18 Motro (1984) used the method of Dynamic Relaxation in order to
obtain a prestressable configuration of the "Simplex". The figure

shows a plot of the successive configurations of the top
triangle.
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non~linear computer program based on the displacement method of analysis,
This work was presented in a condensed form by Motro {(1984).

Vilnay also approached tensegrity structures using the same method; but
his work (Vilnay, 1981, Vilnay & Soh, 1982) is full of misunderstandings as
pointed out by Calladine (1983).

It should be clear from the above discussion that i) the gecmetrical
problem of 'formfinding', i.e. the computation of the nodal coordinates of a
configuration which 1s selfstressable and asthetically pleasing, and ii) the
structural behaviour of such a framework with its members made out of rods
and wire, prestressed to improve its performance, are conceptually different
operations even if some authors have applied the same numerical techniques to
both i) and ii).  The present work will take a very different line-from such
authors: 1ts main thrust is the recognition, discussion and solution of

various pfoblems related to 11) with only Section 5.2 dedicated to.i).

2.5 Recent contributions by geometers and mathematicians

It was noted in Section 2.2 that the interaction between engineers and
geometers dealing with structural rigidity started to become more difficult
towards the beginning of this century, mostly because the aims were different
but also on account of the different términologies used by each group. In
recent years significant efforts to establish common ground have been made
but the exchange of fruitful information is at present still rather slow.

The introductory section of a paper by Laman (1970) set out the main
difficulties facing a mathematician who tried to investigate the rigidity of
pin—jointed assemblies; in short, Laman had found a lot of "obscure and
ambiguous notions" in the engineering literature, so that the first object of

his paper was the definition of a new terminology and of precise concepts.

Mathematical definitions of ‘skeletal structures”, Mlength-preserving
displacements", "infinitesimal and admissible infinitesimal displacements",
"pigidity",... were given; and the meaning of these words in terms of

structural mechanics should be easy to guess for all engineering readers.
After this Laman started his own investigation. The main theorem proved in
the paper is, for engineering purposes, just a little more powerful than
Maxwell's rules on how to build stiff frameworks, and it will not be-discussed:

here, An important effect of the paper by Laman was to provide an initial link
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between engineering problems and mathematical techniques, because his
definitions could be understood and therefore used and improved upon by cther
mathematicians. A number of related papers have been published from 1970
onwards, starting from a complete res-formulation of the problem of rigidity
for pin~jointed assemblies in R™ by Asimow & Roth (1978, 1979) and the more
practically oriented paper by Crapo (1979) which ascribes the 1lack of
rigidity of a three-dimensional truss to elther of the following reasons:
i) a framework which fails to be rigid because it does not have enough bars
fails for topoclogical reasons; 1i) a second type of failure 13 due to

projective geometry reasons, if the nodes and bars happen to have special

arrangements. Rigid, according to Crapo, means that an assembly cannot undergo
even an infinitesimal displacement; and therefore the above description is
correct. But his way of proceeding leads him into the misconception that all
the structures that have been used in engineering practice must be rigid ones
and therefore must have satisfied both the topological (i) and geometrical
tests (1i). This is wrong: see e.g. tensegrities, cable nets,... It is curious to
notice that, although Crapo (1979) introduced the four subspaces of the
compatibility matrix (of which more details will be given in Chapter 4}, he
could not find any use for them, and in practice did not even compute them
since hls aim was to establish general theorems.

The definitions of rigldity and infinitesimal rigidity of varicus corders
have received careful consideration by a number of authors, e.g. Connelly
{1980) and Roth (1980). Having called "infinitesimally rigid" all of those
frameworks which would be kinematically indeterminate, with infinitesimal
mechanisms, according to the terminology introduced in Chapter 1, Connelly
(1980) extended the notion to "infinitesimal rigidity of second order" by
which he meant that no further deformation can be considered after an initlal
infinitesimal one, which is possible if the assembly is not first=order rigid.
This class of definitions is almost equivalent to the ‘engineering!'
definitions of higher+order mechanisms which will be given in Section 5.1.
Connelly (1980) also demonstrated that second-order rigldity implies
ordinary rigidity, but he was unable to extend his proof to the more general

case in which nth-order rigidity implies ordinary rigidity as well. A list of

various pbints in need of further investigation was given by Connelly

(preprint), among which is the need for numerical algorithms. "Generlcally
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rigid" frameworks were also defined in this paper to indicate assemblies that
are rigid, so to speak, in most of their configurations, An engineer's answer
to whether an assembly 1is generically rigid would just be through the
combined use of 'common sense' and Maxwell's rule; but a different approach to
this problem led to this matter being extensively investigated by Asimow &
Roth (1978, 1979) and Roth (1980).

A clarifying point of Roth (1980) and Roth & Whiteley (1981) was the

distinction between regular and singular configurations of a framework with a

specified topology; it was clear to these authors that the general results
mentioned above only refer to regular configurations and that ad hoc
investigations are }equired in the singular ones. The study of singular
configurations was inaugurated by Roth (1981), who noticed the link between
infinitesimal rigidity and the possibility of equilibrating any applied load
in the initial configuration by means of internal forces. He also referred to
the rank of the equilibrium matrix as the "rigidity predictor" which one
should look at in any circumstance. Most of this paper dealt with assemblies
in m~dimensional space RM but, with specific reference to R3, Roth discussed
the risks involved in uéing the formula b=3n-6 as a test for rigidity. He did
not get as far as (2.17), which incidentally would have solved the problem
entirely,. |

Connelly (1982) introduced "energy functions", obtained by adding up the
‘product of the bar tension and the square of the length of some particular
members, to demonstrate various theorems on the rigidity of frameworks., A1l
these theorems are based on the idea that all assemblies made out of rods,
struts and cables (the last two are members that can be subjected to
compression or tension only, respectively) must be selfstressable in order to
be rigid. Conditions relating the rigidity of assemblies consisting of cable
segments and rods to that of ordinary frameworks are discussed by Roth &
Whiteley (1981), -

Infinitesimal mechanisms were referred to as "shaky structures" by
Wunderlich (1982) and Wegner (1984). Consider a framework which satisfies the
topological test described above but which is not rigid; Wunderlich showed
that Af the framework is an infinitesimal mechanism its deformability
survives any linear transformation of the set of its nodal coordinates.

"Shakyness 1is a projective property". But if the framework is a finite
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mechanism a linear transformation will i1n general produce only an
infinitesimal mechanism. The paper by Wunderlich 1s also a wealthy source of
references on mechanisms. Wagner (1984) extended to assemblies in RM the
results cbtained by Wunderlich in R2.

Bolker & Roth (1980) and Wniteley (1979, 1982) investigated a class of
structures commonly known as bipartite. The nodes of these belong to two
disjoint sets and each node of one set 1s connected by bars to all the nodes
of the other set, The first of these papers contains results on the rigidity
in R™ of bipartite assemblies with a total number of 1 and j nodes in the two
sets but when the authors built a model of the structure shown in Fig. 2.19
(i=j=4) they were unable to detect the expected number of mechanisms because
the 'diagonal' bars touched each other. This led to rather disconcerting
forecasts of how the assembly would behave if it was bullt out of cable

segments and rods.

Wunderlich (1965) analysed rigid and deformable configurations of
octahedral frameworks of the same type as Bricard's (1897). In a more redent
investigation Wunderlich (1976) re-—discovered the pléne linkages shown in
Fig, 2.20. Figure 2.20a' shows a bipartite planar framework (1=j=3) with
n=i+j=6, b=1xj=9 which satisfies Maxwell's rule but has m=s=1 and is a finite
mechanism on account of its particular geometry. The mechanism of Fig. 2.20b
is also a bipartite structure with 1=j=3 which has the same statical and
kinematical features although its outlook is quite different. Wunderlich
indicated that these mechanisms certainly have spherical equivalents; it
would be useful to know more about them. More examples of three~dimensional
kinematically indeterminate frameworks have been. presented by

Goldberg (1978) and Crapo (1982): see Fig. 2.21.
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Fig, 2.19
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One of the bipartite frameworks studied by Bolker & Roth (1980).
All the vertices B are in the plane of the paper, vertices A lie
in a parallel plane above it.

Fig, 2.20

Plane mechanisms first developed by Dixon (sSee Wunderlich
(1976)).

a) Mechanism of the first kind. Points Ang,A and B,,B;,B, lie on
two orthogonal lines.

b) Mechanism of the second kind. A,B,A,B, i3 a rectangle whose
circumeircle passes through 4, and B,. A :B1B;4, and A,B,BjA, are
isosceles trapezia, '

41




b)

Fig, 2.21
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a) shows the simplest version of a category of frameworks called
octahedral-tetrahedral trusses by Crapo (1982). They all consist
of two square/rectangular grids'lying in parallel planes, which
are connected to one another by diagonal members. The framework
in a) has s=m=1; the one in b) has s5=5 and m=1,
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3. Study of triangulated hyperbelic parabeoloids -

’

This chapter examines the rigidity of a particular class of ftriangulated
hyperbelic paraboloids; and although the initial aim is merely to test some
of the methods described in Chapter 2, a number of interesting results are
obtained. The layout of the chapter is as follows: in Section 3.1 the geometry
1s described in detail and the basic relationship between the number of
states of selfstress, s, and Infinltesimal mechanisms, m, is introduced. The
most intuitive method of classiflication, based on the direct evaluation of s
by means of the zero~load test, is employed in Section 3.2. As the objective
is to evaluate m and s for a structure with an arbitrary number of sides, two
initial attempts which use the standard equilibrium matrices are made in
Section 3.3 but without a complete solution emerging., The complete answer is
obtained in Section 3.4 by means of a reformulation of the problem in terms of
a stress function. Finally, some loose ends are tied up in Section 3.5 wherg
the stiffening effects of pretension are examined; and concluding remarés

follow in Section 3.6.

3.1 Geometrical description

The geometry of the triangulated hyperbolic parabcocloid which is the subject
of the present investigation, see Fig. 3.1, can be described in the following
way: start from a twisted quadrangle which projects into a square, divide each
of its sides into 1 parts of equal length and connect corresponding points
lying on .opposite sides with straight lines. Divide each one of the small
quadrangles obtained in this way into two'triangles by adding a diagonal (all
the diagonals run in the same direction). Each of these 'lines' 1s a bar of the
framework, each connection between different lines 1s a node; aé elsewhere In
this dissertation, all the nodes are 1deal frictionless spherical hinges.
Finally, connect all the nodes lying on the initial quadrangle to a rigid
foundation by means of vertical pin-~jointed bars, and add three horizontal
bars rconnected to the foundation in order to suppress rigid-body
dISplacements in which the initial quadrangle translates in the x or y
directions, or rotates about a vertical axis. The perspective view of Fig. 3.1
shows the whole arrangement and the coordinate system for 1=4, For the sake of

simplicity it is assumed that the horizontal projection of each quadrangle is

43




~+'a square with sides of unit length, see Fig. 3.2, and that the vertical
projection of any one of the 1 parts in which the sides of the initial
quadrangle has been divided 1s 1 {therefore in analytical terms:ZA=ZC,ZB=ZD,
ZArZB=l); more general cases can be treated at the expense only of a more
laborious computation of the numerical coefficients than in the present
treatment.,
This framework is not free in space, and therefore the six degrees of
freedom corresponding to rigld-body motiona have to be suppressed from the
left-handsiside of {(2.17}. The complete Maxwell's rule for space frameworks

constrained to arigid foundation is:
3n-b=m=s (3.1)

where all the symbols have their usual meanings. The hyperbolic paraboleid

described above has:

No. of nodes: n=(1+1)%2

No. of bars:  b=21(1+1)+12+(41+3) (3-2)

The three elements of the lower sum refer to the number of sides of the
quadréngles,their diagonals and connections to the foundation, respectively.
Substitution of these quantities into (3.1) gives: m-s=0; therefore the
frameworks of the type shown 1in Fig 3.1 are either statically and
kinematically determinate or indeterminate, with s=m. ‘
The set of nodal equilibrium equations yields a square equilibrium matrix
of dimension 3n=b; details on it are given in Section 3.3. Other equilibrium
matrices of smaller dimension are assembled in Sections 3.3 and 3.4; these are
obtained by means of equivalent approaches in which about 1/3, in the first
attempt, and then 2/3 of the global equilibrium requirements are satisfied
automatically as a result of cunning formulations of the problem that take
advantage of the lack of applied forces. Notice that in all formulations the
equilibrium matrices assembled in this chapter are square in cdnsequence of

the algebraic¢ relationship m=s,
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Fig., 3.1 Triangulated hyperbolic¢ paraboloid studied in Chapter 3. For the
Sake of definiteness, the number of bays has been set equal to
four (1=4). Some of the bars are not shown.
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" Fig.. 3.2 General layout of the triangulated hyperbolic paraboloid. Plan
view, : :
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3.2 Direct evaluation of states of selfstress

In this section the number of states of selfstress (and hence mechanisms) and
the bar tensions corresponding to each independent state are evaluated for
hyperbolic paraboloids having l=1,;"7. This 1Is done by use of the zero—load
test briefly described in Section 2.1. The method consists of an exhaustive
investigation of the admissible states of selfstress, one-at—a time; although
this may seem to involve a fair amount of guesswork for an inexperienced user,
it can be systematized in such a way aé to produce reliable answers. The
procedure ls as follows: assign, say, a tension of one unit teo one particular
bar of the framework and evaluate the tensions in the other bars so that no
external forces are required to satisfy the equilibrium equations of the
nodes. This procedure may reach stages where the tensions in some bars are not
uniquely determined, in which case the various alternatives have to be
developed separately: cholces that lead to the vieclation of one equilibrium
equation can be ruled out, while the others produce independent states of
selfstress. Eventually all the independent states of selfstress of the
framework have been obtaiﬁed; notice that the technique becomes impracticable
in the case of large and complex frameworks because these may have several of
the 'branching' peoints described above. It 1s obvious therefore that the
evaluation of independent states of selfstress can be simplified by the
introduction of some general 'rules’'. For hyperbolic paraboloids of the type
described in Section 3.1, these are the following:

(i} Equilibrium of the corners labelled A and C in Figs 3.1 and 3.2 can
be only satisfied by having null tensions In the bars connected to them,

{1i) Any state of selfstress requires non-zero tenslon in at least one
of the diagonal bars, otherwise all the remaining tensions would also vanish,

{1i1} Equilibrium of any internal joint in the direction perpendicular
to the plane containing the sldes of the quadrangles requires that, if t1 and
t, are the tensions in the diagonal bars connected to. that joint, t,=-t,.
(This last observation enables one to carry out the entire study on an
equivalent plane system).

Hyperbolic paraboloids with 1,2,...,7 sldes were examined. No state of
selfstress was found for 1=1,2,3,5,7. Two were found in the case l=4 (see
Fig. 3.3 for details; notice that both states of selfstress are symmetrical

relative to the vertical plane passing through the corners B and D, and they
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Fig. 3.3
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States of selfstress of triangulated hyperbolic paraboloids with
four sides (1=4). Solid lines represent bars earrying non-zero
tension; T and C represent unit tensile and compressive tension
coefficients, respectively. Each state of selfstress is

‘associated to an infinitesimal mechanism; and the stress function

% corresponding to a given state of selfstress gives the vertical
components of nodal displacements,
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are symmetrical and anti-symmetrical - respectively - relative to the plane
through A and C) and four for 1=6 (see Fig. 3.4; these states of selfstress
also satisfy various properties of symmetry/anti*symmetry). It can be easily
verified that all the states of selfstress satlsfy the conditions (i), (ii)
and (iii) above. Physical models were bullt from plastic rods and rubber
joints for 1=2 and 1=4: the smaller one was rigid while the larger one
displayed two mechanisms, with the same properties of symmetry and
anti-symmetry of the states of selfstress shown 1n Fig. 3.3. The results
obtained are summarized in Table 3.1.

Hyperbololids with a larger number of sides could not be examined because
it was difficult to find several independent sets of tensions; this would be
tricky even in frameworks not as complicated as the present ones. In general
one of the disadvantages of the zero-load methed is that, if s, Independent
states of selfstress have been determined, s, is a lower bcound for s; on the
other hand s,=b is definitely an upper bound, but it is clearly a rather
unsatisfactory one. In the present case the observations made earlier enable
one to reduce 3, to aboup 2b/3, but this is still high.

Another disadvantage of this method is that when s independent states of
selfstress have been found the only 1nformation available on the
inextensional (internal) mechanisms Is their number, which leaves thelr

details still to be determined.

l|12311567
slooozouo

Table 3.1 Dimensions of hyperbolic paraboleoids, in terms of the
number 1 of sides, agalnst the number of states of selfstress s.

These results have been obtalned by use of the zero—load method. e

3.3 Equilibrium matrices

Although in Section 3.1 the total number (=3(1+1)2?) of rows and columns of the
complete equilibrium matrix was evaluated, here the (unknown) tensions in all
the bars connecting the framework to the foundation will be dropped, together
with the corresponding equations, in order to reduce the size of the

equilibrium matrix with no loss of generality; The idea here is that the
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Figs 3.4a,b States of selfstress no. 1 and 2 of triangulated hyperbolic
' paraboloids with six sides (1=6}. See caption of Fig. 3.3.
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vertical equilibrium of the upper node of each vertical support determines
its tension,once the tensions in the triangulated network have been decided;
the tensions In the three horizontal supports of nodes A and C have to be
zero, of course, for the overall equilibrium. In this way, the number of
unknown bar tensions is reduced to only the first two terms of the sum for b
in (3.2), and therefore b=312+21, The number of equilibrium equations to be
considered is likewise reduced: equilibrium of the boundary nodes in the
vertical direction c¢an be satisfied at a later stage, and the equilibrium
equation of node C in the y direction and both equations of node A in the
horizontal plane are all automatically satisfied. Exactly 31%+21 equations
are left to give a square equilibrium matrix.

The first step is now the cholce of convenient numbering systems for the
nodes and bars of the hyperbolic paraboloid; the most promising results have
been obtained using the schemes illustrated in Fig. 3.5. In matrix form, and
having denoted by {t/1} the vector of dimension 312+21 that contains the bar
tension coefficients in the order specified in Fig. 3.5, the equilibrium

equations are:

3141 31+1 3141 31+1 3141 31+1 1
21 [L, i
3141 [N, Ly

31+1 Ny Ly {t/1}={0} (3.3)
31+1 N Ly
21+1 | Nivp Loy

where all the entries of the submatrices LT’ Nl+1' Ll+1 are either 0 or z1; but
some of therentries of Ny, Ly (1=2,...,,1) are not integer numbers as they depend
on the relative inclination of the bars. The vector on the right-hand-side is
Zero as no external forces are considered. The system of equations (3.3)
admits non-trivial solutions only If the equilibrium matrix does not have
full rank; in particular the number of-independent solutions, i.e. states of
selfstress, is givén by s=31%+21~-rank., This point will be discussed

extensively in Chapter 4.

51




The structure of the matrix in (3.3) is such that the extended Laplace
rule {Aitken, 1958) is the most promising procedure to obtain a closed-form
expression of its determinant; indeed this technique has been successfully
employed by Tarnai (1980a) in a case that has some similarities with the
present one. But the expected answer, i.e. a formula giving the value of the
determinant as a product of 1+1 determinants which are simple to evaluate,
could not be obtained in spite of several attempts to reorder rows and
columns of the equilibrium matrix; the main difficulty 1is due to the
non-squareness of submatrices Ly, Ny,q and Lj,q.

The third observation in Section 3.2 can be used to reduce further the
number of unknown quantities and, at the same time, simplify the equilibrium
matrix. Assume that the tensions in all of the diagonal bars can be obtained
from the 21-1 values indicated in Fig. 3.6 by using (iii): the total number of
unknowns is in this way reduced to 21*+l1-1 and each node is automatically in
equilibrium in the direction of the local normal; in this way the non—integer
entries disappear from (3.3). A general procedure for the transformation of
the corresponding equilibrium matrix into a diagonal matrix has been devised;
and the matrix rank is equal to the number of non-vanishing diagonal
coefficients. Further details of this approach will not be given here because
a different and more complete solution which leads to the evaluatlon of the
states of selfstress and also of the infinitesimal mechanisms will be

developed in the next section.

3.4 Stress function approach

A third formulation of the equilibrium approach which uses a stress function
as the direct unknown of the problem (this function is entirely defined by
the values it assumes at each joint) reduces the number of equations to be
considered to the number of joints. It is well known (Den Hartog, 1952) that
the use of a stress function can greatly simplify the analysis of a plane
continuum by satisfying automatically the equations of equilibrium, and hence
leaving only a (bi-harmonic) equation of compatibility to deal with.

In the context of a purely membranal formulation, a similar approach has

been followed by Flugge (1973) to obtain solutions in closed form for shell

structures of several shapes. This approach is based on the observatlon

(Flugge, 1973)_thét the introduction of a stress function #=&{x,y) such that:

he




(L) (i=1}+2 (W)6-14

(WG \///\/ (el

a)

b)

Fig. 3.5 a) View of 'row i' of Fig. 3.2, together with the node numbers. The
numbering system of the bars feollows from it: in each node the
bars are taken in the order shown in b). These numbering systems
lead to the equilibrium matrix in (3.3).

e fgledelds
17/_
l/

Fig. 3.6 Modirfied numbering system for the diagonal bars, which leads to
‘the equilibrium matrix in 2D deseribed in Section 3.3.
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N, =020/3y? 'ﬁy=32¢/ax2 ﬁxy=—32¢/axay (3.4)

where ﬁx’ Ny, ﬁxy are the components in the horizontal x-y plane of the stress
N

resultants Nx’ N automatically satisfies equllibrium in the x and y

P
directions when z; hozizontal components of load are applied, Substitution of
{3.4) into the system of three differential equations of equilibrium
satisfies iéentically two of them; this leaves only one differentlal equation
in ¢ to be solved.

A second crucial point (Calladine, 1977) is the formal analogy between
the equilibrium and compatibility equations of a thin, shallow shell; one of
the interesting points of this analogy is that the stress function ¢(X,Y) and
the vertical component of displacement z(X,Y¥) satisfy formally identical
differential equations: therefore one function can describe them both
provided the boundary conditions are the sameﬂ

Aiming at a reformulation of equations {32.4) suitable for a triangulated
surface rather than a smooth shell structure, notice that an acceptable
stress function must lead to stress resultants which are constant along any

bar and equal to zero corresponding to empty spaces. The horizontal component

of the tension in bar i is given by the change of the slope of &(X,Y) from one

side to the other of the bar, in the direction normal to the bar. It is easy to
verify that a stress function ¢ made up of triangular patches, the horizontal
projection of which coincides with the horizontal projection of the
framework, satisfies the above requirements: this function defines for each
bar a constant horizontal component of tension, equal to the change of slope
across the crease. No tension components exist elsewhere because there are no
other changes of slope. ¢ 1s completely defined by the vertical coordinates
of its vertices; its values at the boundary nodes must be such that there is
zero stress in the 'empty space' around the assembly and in the three
horizontal restraints of nodes A and C (see Fig. 3.2). This last condition
follows from considerations of external equilibrium of the assembly. In
conclusion, from the point of view of equilibrium, ¢ can only vary linearly
outside the assembly. But the analogy described abové can be fully exploited

only if ¢ satisfies the boundary cohditions on the vertical component of

1 Notice that, as elsewhere in this dissertation, X, Y, Z denote the
cartesian c¢oordinates of a node; while X, y, z denote either its

cartesian components of displacement or the coordinate axes.
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displacement z. Therefore it Es best to choose ¢(0,Y)=9(X,0)=0(1+1,Y}=
=0(X,1+1)=0, as in Fig. 3.7. The horlzontal component of tension in each bar of
a trlangulated paraboloid of arbitrary 1 can be derived from &, and the
coefficlents that multiply the four values of ¢ relevant to each bar are
displayed in Fig. 3.8.

Does the relationship between stress function and bar tensions according
to Fig. 3.8, lead to completely automatle satisfaction of the equilibrium of
each ncde in the x and y directions? Using from now on the numbering system
defined 1n Fig. 3.9, the equllibrium equatlion of an arbltrary (internal) node

i, in the x direction, is:
(6 ) gy ™ (80D yy /Y24 (8 )y #( 5y, /¥220 (3.5)
Substitute for the tenslons their expressions in terms of ¢ to obtaip:

TRy g Oy )= (V20 V205 /204,020, /Y24

.6
+(—¢i+¢i+1_® +¢1+l)+(}/_2.¢1_1"/§¢’i+}/§¢i+l+3'ﬁ¢i+l)/‘/§=o (3 )

i+1+1

This equatio'n is identlcally satisfied for any ¢; and the same is true in the
y directlion. This proves that the equilibrium in the horizontal plane is
automatically satisfied when the bar tensicns are derived from ¢ in the way
described. The second reference to shell theory, namely the analogy between ¢
and z, will be proved in Section 3.5, '

It now remains t¢ determine what conditions on ¢ are imposed by the
conditions of equilibrium in the vertical direction. The equation of

equilibrium of node 1, see Fig. 3.9, is:

6
J=1 :

where the vertical external load py; (=0} 1is positive 1if downwards.
Multiplying the ratio.between the vertical and horizontal projections of each
bar by the coefficients of Fig, 3.8 one obtains the vertical components of

tension in terms of ¢; and substitution into (3.7) gives:
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Fig. 3.7

Fig. 3.8

Fig., 2.9

Example of a stress function ¢ of the type described in
Section 3.4, for the hyperbolic paraboloid shown in Fig., 3.1. Only
the nine values of ¢ corresponding to the inner nodes are needed
to define such a stress function. Starting from the back, and
proceeding from left to right, the values of ¢ are: ¢,=¢,=1,
by=, =0 =0, dg=1, ¢,=~1, ¢;=2 and ¢,=0.

1

Numerical coefficients that multiply the values of the streas
function, in order to define the horizontal component of tension
in a bar,

i-1-1 -1

Bar and node numbering systems used to set up the equations of
equilibrium (3.5)-(3.8).
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(271000117031 *03 720y ¥y, 705,140 ,04)=0 (3.8)

Only the internal nodes of the triangulated surface need to be considered,
see Section 3.3; their total number is (1-1)2%, equal to the number of unknown

parameters that define ¢. The system of equilibrium equations 1s in matrix

form:
A B 1
BTA B
(1-1)% UL {el={0} _ (3.9)
BTa B
b BTA-
(1-1)2
where:
(-2 1 ] 1 T
1 =21 -1 1
A= . B= 1-1
1t -2 1 -1 1
| ] =2 L “1 13
1-1 ) 1-1

and {¢} 1s the vector containing the unknowns of this formulation:
¢1,¢2”.“¢(1_1)2. Notice that the equilibrium matrix 1s symmetrical, and
therefore 1t 18 identical to 1ts transpose, the compatibility matrix, This

property is a condensed proof of the analogy between ¢ and z.

3.4.1 Rank of equilibrium matrix ,

The rank of the equilibriuvm matrix (3.9) will indicate the number of
non~trivial, independent solutions of the system of equations. Its
computation is stralghtforward after performing a serles of operations that,

without altering the value of the rank, transform the matrix into the form:
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:
(1-1) (1-2) oo
!
I

. (3.10)}
S N T
(-1 L LAY
e —
(1=1)(1-2) (1-1)
In fact,
rank=(1-1)(1=2)+rank(4a") (3.11)

The transformation of the matrix from the form (3.9) to (3.10} is done as
follows. An important property of determinants (Aitken, 1958) allows linear
transformation of rows: "The determinant of a matrix is unaltered when to any
row is added a constant multiple of any other row", For the purposes of the
following operations, each group of (1-1) rows, corresponding to one row of
submatrices in (3.9}, is referred to as a segment of the matrix; the whole
matrix is therefore divided into (1-1) segments. Notice that the operation of
addition of rows occupyling corresponding positions in two segments will be

referred to as addition of the two segments. Starting from (3.9) proceed as

follows:

(0) Add to each segment all the following ones.

(1) Operations within segment 1: add row 1 to row 2, add the new row 2 to
row 3,... Add segment 1 to segment 2. Transform segment 2 by subtracting rows
2,34 (171} of segment 1 from rows 1,.. (1-2)} of segment 2.

(i) Operations within segment i: add row 1 to row 2, add the new row 2 to
row 3,... Add segment 1 to segment (i+1). Transform segment (i+1) by
subtracting rows 2,3,... (1-1)} of segment 1 from rows 1,. (1-2) of segment
(1+1). ,

(1-2) Follows from (i).

The equilibrium matrix is now in the form (3.10) but A' has different

expressions in the two cases:

58




At= for 1 odd

A?

for 1 even

The determinant of the upper matrix is not zero, hence the matrix has rank
(1-1). The rank of the lower matrix is clearly 1, independently of 1. The last
step of the transformation that diagonalizes the equilibrium matrix 1is
therefore: .

(1-1) Operations within segment {(1-1): add row 1 to rows 2,4,6,... and

subtract row 1 from rows 3,5,... Substitute these results into (3.11) to obtaim:

(1-1)2 for 1 odd
rank= (3.12)
(1-1)(1-2)+1 for 1 even

This is the main result of the whole chapter, and it agrees with the special
results presented in Table 3.1.

The hyperbolic paraboloid described in Section 3.1 1s statically and
kinematically determinate if the number of its sides 1s odd; but 1t is

indeterminate with s=m=1-2 for 1 even.

3.4.2 States of selfstress

The remaining part of this section and the next complete the investigation of

hyperbolic paraboleids with an even number of sides,




The first point is obviously the evéluation of 1-2 vectors {¢} which
satisfy (3.9) and define the independent states of selfatress; although a more
efficient way of solving the same problem will be described in Chapter 4, the
following property of matrices (Aitken, 1958) can provide a solution in
‘closed form': "Any permutation of the rows of a matrix can be done by
premultiplying 1t by a matrix derived from the unit matrix by the same
permutation of rows". And this can be generalized to include the addition or
subtraction of rows. Let Ii’ i=(0,1,ee.,1=-1), be the matrix obtained by
operating the transformation (i), defined in Section 3.4.1, on a unit matrix
of dimension (1-1)2, The original equilibrium matrix can be dlagonalized by
premultiplying it by Ilq1IlHE.HI110. In particular, the last 1-2 rows of the
equilibrium matrix are transformed into null rows and the entries of the last
1-2 rows of the product I;_y...Iy define independent linear combinations of
columns of (3.9) equal to {0}, Therefore they are the required states of
gselfstress expressed in terms of ¢. For 1=4,6 this method re-cbtains the

states of selfstress which are shown in Figs 3.3 and 3.4,

3.5 Analogy between ¢ and z., Computation of mechanisms

Simple considerations of geometrical compatibility can be employed to prove
the analogy between the stress function ¢ iIntroduced in Section 3.4 and the
vertical components of displacement z (as elsewhere in this dissertation, the
nodal displacements will be assumed to be small). For the sake of simplicity
the following proof only considers inextensional deformations of the
framework.

Let z; be the vertical component of displacement of node i, due to an
inextensional distortion in which each triangle translates and rotates from
its initial position. The obvious compatibility requirement 1ls that the six
triangles that meet In node i should fit together, therefore the following
vector equation has to be satisfled:

b

I {rj}=to} (3.13)

J=1
where {rj} is the vector that represents the relative rotation of triaﬁgles

j+1 and J. Equation (3.13) can be examined in scalar terms and one notices
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that the horizontal components of the {rj}'s automatically satisfy it. The

only effective condition imposed on the deformation is therefore:

‘g:}([rjn;o (3.14)
The components of {rj] can be computed from z. The horizontal component of the
relative rotation between two adjacent triangles, due to z, is essentially the
same thing as the angle between two triangular patches defining ¢ that was
computed in Section 3.4 (see also Fig, 3.8). The horizontal components are
€asily transformed into the vertical ones, required for (3.14), by multiplying
each horizontal component by the ratio of the vertical and horizontal
components of length of the edge in common. The compatibility equation is

therefore:

(2/1)(23 1172414811722 442141724 4 1 ¥B 1,4 41 ) =0 (3.15)

Equations (3.8) and (3.15) are formally equivalent; this proves the analogy.
The system of equations (3.9) can be now regérded as a system of compatibility
equations and the states of selfstress obtained in Section 3.4.2 are also
vertical components of displacement of inextepsional mechanisms.

It will be shown later on, see Chapter Y4, that the scalar products of the
vertical forces needed to equilibrate each Joint of a statically and
kinematically indeterminate framework, once a state of selfstress has been
imposed and all the joints have-been displaced by quantities proportional to
a mechanism, and the various mechanisms are a meaningful way of classifying
the mechanisms, Using the above results these scalar products have been
computed for hyperbolic paraboloids with 1=4,6, It turﬁs out that the products
never vanish and the 'sign' of the states of selfstress can be checsen in such
a way that these products are positive; this means ~ as it will be shown -
that these structures are only free to undergo rather small inextensional
distortions. There is no reason why the same should not happen for larger

number of sides. ' -
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3.6 Conclusions

The triangulated hyperbolic paraboloids of Fig. 3.1 are statiecally and
kinematically determinate frameworks if their number of sides, 1, is odd. But
they are ill-conditloned frameworks with an equal number of infinitesimal
mechanisms and statical redundancies, linearly growing with the number of
sides, if 1 is even.

The states of selfstress/inextensional mechanisms found in two of the
examples studied in this chapter satisfy simple properties of
symmetry/anti-symmmetry relative to the vertical planes passing through the
corners of the hyperboloids; yet no general rules which are valid for an
arbitrary value of 1 have been found, -

Structures consisting of a number of Interconnected hyperbolic
paraboloidal sheets may also show similar patterns of behaviour; this is a
problem open for investigation. A large number of single layer triangulated
hyperbolic paraboloids has been built in recent years (Makowski, 1981) some
of which are very similar in layout to Fig. 3.1. The conclusions reached in

this chapter may be relevant to their behaviour.
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4, Structural mechanics of frameworks

This chapter deals with purely 'geometrical' analyses of pin-jointed
assemblies., Section 4.1 introduces the four fundamental subspaces associated
Wwith the equilibrium matrix and relates them to the subspaces of the
compatibility matrix. Sections 4.2 and 4.3 describe an efficient
computational procedure for obtaining these subspaces, and demonstrate the
calculations for a rather straightforward example. An essential refinement is
introduced in Section 4.4 in order to separate 'rigid-body’' from 'internal'
mechanisms when dealing with frameworks which are either partly or entirely
free in space. Leaving aside only assemblies with very special properties
that will be +the subject of a separate investigation 1n Chapter 5,
Sections W,5 and 4.6 conclude the study, enabling one to tackle any of the
assemblies encountered in Chapters 2 and 3. The results obtained for some
well-known and less well—known structures are given in Seection 4.7. The

chapter concludes with a discussion.

4,1 Equilibrium and compatibility of pin-jointed assemblies

The aim of this section is to set up a conceptual framework within which the
behaviour of every pin—-jointed assembly can be predicted and understood with
absolute clarity; this requires the introduction of the equilibrium matrix,
and 1ts transpose the compatibility matrix, and the four vector aubspaces
associated with them.

Conslder an assembly that consists of a total of n nodal points connected
by b bars to each other and by a total of ¢ kinematic constraints to a rigid
foundation. Two sets of statical variables must be considered: the tensions in

the bars and the external forces applied to the joints.

The tension in each bar 1is defined by a single number, and positive

tensions will denote tensile axial forces; 30 there are altogether:
b tensions, assembled in the vector {t}.

Each unconstrained joint can be subjected to the action of a forece with
arbitrary components in the direction of the axes of the chosen cartesian
system of reference (0,x,y,z). The three scalar components of the external

| force épplied to each of the n joints would give a set of 3n force components
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but there is in general no need to introduce into this set the three §
components of force acting upon a joint which is riglidly connected to the

foundation by three kinematic¢ constraints. Similarly, only o¢ne or two

external components of force need to be considered for joints subjected to
two or one constraints, respectively. The total number of force components is

therefore:
3n-¢ loads, assembled in the vector {f}.

Notice that there has been no mention of the c¢constraint reactions; thelr
total number is ¢ but, unless elastically or inelastically yielding
constraints are present = in which case one can consider them as extra bars
of the assembly - they play no part In the following analysis,

Similarly, two sets of variables are needed to perform the kinematical

analysis: the elongations of the bars and. the displacements of the joints.

Each of these corresponds directly to one of the statical variables, and
therefore the same 'positive sense' and order of numbering will be maintained.

Thus the kinematical variables are:

b elongations, assembled In the vector {e};

3n-¢ displacements, assembled in the vector {d}.

4.1.1 Equilibrium approach
The three equilibrium equations for a general, unconstrained node i (see
Fig. 4.1) which is connected by the bars p and g to the nodes j and k may be

written as follows:

(4.1)

Here Xi, Yi and Zi are the cartesian coordinates of node i in the original

configuration of the structure; fix’ and fiz are the components of the

fiy
D 1s the length of bar p and tp is the

tension in it. The equillbrium equations of kinematically constrained nodes

external force acting upon node 1; 1

are automatically satisfied, and therefore only 3n-¢ equations in b unknowns

remain; these can be written in matrix form as:
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p q [ )
. . tp
.« (xi'x‘j)/lp . & s (Xi"xk)/lq PR fix
3n“0 . (Yi_yj)/lp P S (Yi_Yk)/lq . < &: .fiy (u.g)
s » (Zi-zj)/lp .« e . (Zi"‘zk)/lq . 0 fiz
t
. . q
R * : .
\ v ——/ “
b
In short: [Al(t}={f) (4.3)

where [A] is the 3n=c by b equilibrium matrix. The matrix [A] provides a

transformation of any b-dimensional vector {t} into a (3n-c)~dimensional
vector {f} given by (4.3); it is therefore a linear operator between Rb, the
space of tensions, and R(3n—c)’ the space of loads. Four subspaces are always
associated with a matrix (for a detailed explanation of the standard
terminology used in this section see any textbook on Linear Algebra, e.g.
Strang (1980)). In the case of the equilibrium matrix [A] their names and

dimensions are:

Space Subspaces Dimensicns

b Row space of [A] ry
bar space R
P Nullspace of [A] s
~ Column space of [A] r
joint space R(3n‘°) A
Left—-nullspace of [A] M

where ra is the_rank of the equilibrium matrix and

S=b—r‘A (u. H)
M=3D“C“I"A

A vector subspace can be defiﬁed either in terms of the properties that
‘characterize its fectors or by provfﬁing one of 1its bases, i.e.-a set of
independent vectoras that span the givén subspace., Each of these two kinds of
description is useful for different purposes. For the sake of clarity only

~ algebraic 'definitions' and their interpretations in terms of structural
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mechanics will be given at this inltial stage; the convenient terms of row and

column vectors will be used to denote the entries in a row or column of [a],

respectively.

The row space of [A] is the subspace of the bar space Rb spanned by the
row vectors of [Al; its dimenslon is r, because the rank of [A] is equal to
the number of independent row (or column) vectors. It 1s easy to convince
oneself that any tension vector whose cbmponents are equal to a row of the
equilibrium matrix cannot be 1n equlilibrium without external forces, unless
all i1ts components vanlshed., Therefore the row space of [A] consists of the
tension vectora {t} that require external loads to be in equilibrium.

The nullspace of [A], also called the kernel of [A], is the subspace of RP

consisting of the solutions of the system of equations
[aliti={0} (4.5)

The solutions of (4.5) are all the states of selfstress of the assembly,
therefore the dimension of the nullspace of (4], equal to the number of

independent states of selfstress, is s=b-r,.

The column space or range of [A] is the subspace of g3n-¢ spanned by the

columns of [A]}; its dimension is PA.Column.number i of the equilibrium matrix
contains the nodal loads that are required to equilibrate the assembly if the
tension in bar number 1 is set equal to one, and the remalning tensions are
zero, Only a total of ry columns of [A] are Independent, which means that
there are r, independent systems of load that the assembly can sustain and rp
bars corresponding to them. Following Vllnay (private communication) these
load systems will be called the "fitted loads! of the assembly.The remaining
bars are redundant and one can obtain a statically determinate assembly by

removing them.

The left-nullspace of [A] is the subspace of R3N™C consisting of the

solutions of the system of equations
(a1T(r1-10} | | (4.6)

By similarity to the nullspace, the dimension of the left—nullspace 1s
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M=3n-c-ry. Transpose (14.6) to obtain (£} [Al={0}T. This is a relationship that
can provide some insight: the dot product of a vector (f} that satisfies (4.6)
and any column of [A] vanishes. Since any column of [A) represents a load
system Iin equilibrium with a tension of 1 in one particular bar of the
assembly (see above), the solutions of (4.6) are orthogonal to all such load
systems. Therefore the left-nullspace of [A] contains all the force systems
that cannot be equilibrated whatever value the bar tensions take: they cannot
be carried by the assembly in its original configuration, In conclusion,

column space and left-nullspace are orthogonal i,e. any vector from the first

space 1s orthogonal to all the vectors of the second one. The row space and

nullspace are also orthogonal: this is easily demonstrated by evaluating the

dot product of two vectors (t;} and {t,} belonging to the rowspace and
nullspace, respectively. By definition there exists at least one vector {f,}
of the column space such that {t1}=[A1T{f1}; substitute this expression into
{t,371¢,} to obtain ({£,}T[AI{t,}, which vanishes as [Al{t,}={0} because {t,]
is a state of selfstress, In fact these subspaces are no£ merely orthogonal,
since one of them contalns all the vectors orthogonal to the other: the two

subspaces are thus orthogonal complements of each other.

In conclusion, any set of bar tensions {t} can be uniquely decomposed
into two orthogonal sets of tensions: its projection onto the row space of the
equilibrium matrix, which equilibrates any applied permissiblile loads, and
its projection onto the nullspace which is self-equilibrated but, of course,
influences the geometrical compatibility of an elastie structure. Similarly,
an arbitrary load condition (f} can be uniquely decomposed into two
orthogonal load systems: its projection onto the column space of [A], which
can be sustained by the assembly in its initial shape, and 1ts projection onto
the left~nullspace that may be carried only if the assembly adopts a deformed
configurétion. See Flg 4.2, More detalls on these last remarks will be given

in Section 4.5 and Chapter 6,

4.1.2 Compatibility approach
The elongétion of bar p of the framework, which connects two unconstralned

-nodes J and k, caused by an assigned nodal displacement {(see Fig 4.3) is:

ep=/(xi+xi-xj-xj-)2+(Y1+yi-rj—-yj.)2+( Zi+zi“.zj;' j )z—lp (4.7)
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Fig. 4.1

Bar space ¢f tensions

vi
3
Y| A1 l fix
Yj T J p
q
Y+ k
’ xlj Xlk Xi x

View along the axis 0z of a joint i which carries external
forces, and which is connected by bars p, q to joints j, k.

Joint space of loads

Fa Fa
/—\/\_/*\ /W\
Row space ' Column space
: |
———-—/
e . {
{tdr— |
‘ o] I
b o= = il 1
it i
s :
Nullspace K_-- 1--* &
J
M
Left-nullspace,
this component of
load cannot be
equilibrated.
Fig. 4.2 The equilibrium matrix [A] is a linear operator between the

vactor spaces Rb and R3nrc; it assoclates nodal loads with bar

tensions., The above picture refers to an assembly which is’

gtatically indeterminate (s>0) and kinematically indeterminate
(M>0). .

{t} and {f} are arbitrary points of the bar and joint spaces,
respectively. See Section L.1.1. '
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where Xi{» ¥i» 2j are the cartesian components of displacement of node {i; 1p is
the length of bar b measured in the original configuration of the assembly,
and ep is its elongation. On the hypothesils of small displacements, all the
terms of order higher than one can be neglected and the following 1linear

expression is obtained:

(Xi—xj)(xi~xj)/lp+(Yi“Yj)(yi“yj)/lp+(zi*zj)(zirzj)/lp=ep (4.8)

A simllar equation of geometrical compatibility relates displacements and
elongations of any bar of the assembly; 1n matrix form the whole system of

compatibility equations is:

- 1( s
¥i
.. Xi-Xj Yi~Y- Zi—Zj .. quxi Y.—Yi Zj-Z . Z; ep
b lp 1p lp lp lp 1p =
%]
Y3
z.
N ~———
3n-¢
(4.9)

in short: [Bl{d}={e}. Here [B] is the b by 3n-c¢ compatibility matrix.

Everything said about the equilibrium matrix [A] in Section 4,1.1 is also
valid for [B], bearing in mind that the compatibllity matrix operates from
the (3n-c¢)-dimensional space of nodal displacements R3"™C to the
b~dimensional gpace of bar elongations Rb. In particular, the four
fundamental subspaces of the compatlibility matrix are:

The row space, a subspace of the joint space R3"C, spanned by the row
vectors of [B]: its dimension is rg. Row p of the compatibility matrix [B]
defines a displacement {d} in which each end of bar i moves by 1 1n the same

direction as the bar; the corresponding elongation e. is therefore +2; the

P
other bars of the assembly deform accordingly. This shows that the row sSpace

of the compatibility matrix contains all the displacements which require the
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elongation of one or more bars, i.e. all modes of deformation which are not
inextensional mechanisms.

The nullspace, is the subspace of the joint space formed by the solutions
of [B}{d}={0}; it is therefore the space of all inextensional motions
(mechanisms), including rigid~body and internal ones, of the assembly. Its

dimension is
M!'=3n-c-rg (4.10)

The range, the subspace of the bar spacs RD spanned by the columns of [B]:
its dimension 1s rp. Any particular column of the compatibility matrix
defined in (4.9} contains the bar elongations due to a displacement f{d} which
has +1 as its entry corresponding to the chosen column and zero elsewhere.
This demonstrates that the bar elongations in the range of [B] are all

geometrically compatible.

The left-nullspace consists of the solutions of [B]T{d}={0}, its

dimension is
s'=b-—r'B (4.11)

Following the discussion of the left-nullspace of [A] as a guideline it
should be plain that this subspace contains all combinations of bar
elongations which are forbidden by the conditions of gecmetrical
compatibility of the assembly.

The conclusions of Section 4,1.1 on the orthogonality of the four
. subspaces also apply. Some noteworthy kinematical conclusions can be drawn:
any nodal displacement {d} can be uniquely decomposed into two orthogonal

vectors, its extensional and inextensional components; these are the

projections of {d} onto the row space and nullspace of [B]l, respectively.
Similarly, any set of bar elongations {e} can be uniquely decomposed into its

compatible and incompatible components, these are its projections onto the

column space and left-nullspace. See Fig. 4.4,
The similarity between the equilibrium and compatibility approaches

cannot have passed unnoticed. In fact the 1link between corresponding results
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Fig. 4.3 View along the axis 0z of a bar P the end nodes of which move from
the initial configuration (X,Y) to the final one (X+x,¥+y).

Bar space of elongations Joint space of displacements
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elongation is N e
incompatible. M
Fig. 4.4 The compatibility matrix [B] is a linear operator between the

vector spaces R3nﬁc and Rb; it associates nodal displacements
with bar elongations. See Sectlon U.1,2,
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is much stronger. Thus compare row number p of the compatibllity matrix shown
in {4.9) with column p of the equilibrium matrix in (4.2); although the former
shows a complete version while the latter does not, all their entries will be

equal In the end. Thls demonstrates by induction that the compatibillty

matrix is the transpose of the equilibrium matrix, and that the two sets of

subspaces introduced above are the same thing, see Table 4,1, Thelr dimensions

dim. Equilibrium [A) Compatibility [A]T
Row space: tensions in Column space: compatible
ry equilibrium with fitted|= elongations
loads
Bar space J_ J_
Nullspace: states of |_ Left-nullspace:
s =
selfsfress incompatible elongations
Column space: loads Row space: extensional
: !
ry which can be carried |= displacements
(i.e. fitted loads)
Jolnt space J_ J_
M Left-nullspace: loads | Nullspace: 1nextensional
which cannot be carried displacements
8=b-r,
M=3n~rA-c

Table 4.1 The relationship between the fundamental subspaces of
the equilibrium and compatibility matrices. b, n and c are the
number of bars, nodes and kinematical constraints, reépectivélm
r, is the rank of the equillbrium matrix [Al. 8 is the number of
states of selfstress, and M is the total number of inextensional

mechanisms (including 'internal' and 'rigid-body’ motions).

also coincide, hence: r,=rpq, g=g', M=M and subtraction of the first of the

relationships (4.4) from the second one yields M-3=3n~c-b for an assembly

free in space M=m+6 and c=0, and so this formula agrees with (2.17).
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The last result obtained in this section, i.e. [B]=[A]T,is well known in
Structural Analysis, see Livesley (1975) or Calladine (1978), but the usual
way of demonstrating it relies on virtual work, which is a less direct way of
making the statements about equilibrium and compatibility: these are exactly

equivalent to those made here.

4,2 A scheme of computation

The four subspaces defined in Section 4.1 will be an essential element in the
expositlon, but little progress can be made until a more operational approach
I1s taken. As already noticed, this can be only achieved by computing a basis
for each subspace, i.e. a set of independent veotorsfthat 8pan the space. This
1s the objective of the present section, which describes an algorithm for the
automatic computation of the rank of the equilibrium matrix’ (and hence, by
(4.4}, the number of independent mechanisms M and states of selfstress s) and
of bases for the four fundamental subspaces.

Start by writing out the matrix [A] with an adjoining identity matrix [I]
of' dimension 3n—c; as shown in Fig. 4.5a, and then proceed to operate on the
rows of the extended matrix [MI] with the aim of transforming [A] into a

'staircase pattern' with 0's in the lower-left of the 'triangle' schematically

shown in Fig. U.5b: this is called echelon form of the matrix (Strang, 1980).

The transformation 1s performed by a modified Gausslian elimination. The
matrix [I] asscciated with [A] is sometiﬁes known as the 'record matrix',
since it records precisely the row operations performed during the
elimination sequence., In the first stage of the transfbrmation the aim Is to
have a non-zero entry in position (1,1), with 0's In the remainder of the
column. In the operations leading to this, exchange row 1 of [A[I] with the row
that contains the largest entry in column 1 and use this as the pivotal row to
transform the rows below it. Next perform similar operations on the matrix
obtained by disregarding the first row and first column, with the aim of
securing a non-zero entry at (2,2) and 0's in the lower part of the second
column. Now while these operations are being carried out it sometimes happen
that no bivot can be found in the column under investigation; in which ecase
attention is transferred successively one column to the right until a pivot
is‘eventually found or the last colﬁmn of [A] has been processed. When the

transformation has been completed the bottom M=3n-c-rp rows of [A] are filled
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by 0's; the rank of the matrix is equal to the total number of pivots found.
Thus in the transformed matrix [E[f] shown schematically in Fig. 4.5b, pivots
were found in columns 1, 2 and 5 but not in columns 3, 4, 6 and 7; hence ra=3.
The columns with pivots are marked * in Fig. U4.5b; these denote in fact ry
linearly independent columns of the original matrix, which are also marked ¥
after the transformatioq is complete. The bars of the framework wich
correspond to columns not marked ¥ are 'redundant' bars. Notice that the
cholice of which bars are considered redundant here depends on the numbering
systems of bars and joints, and on the numerical strategy adopted;
Livesley (1967) has argued that procedures like the one described above aim
at 'the best' set of redundancies. For a comparison of different procedures
see Domaszewski & Borkowski (1979). Since all non-trivial applications of the
method described above require the use of a digital computer to assemble
[A|I] and transform it into [EIE], the entries of these matrices will be
expressed a3 floating-point numbers, How many digits are stored at any time
depends on the particular computer which is used: in any case small errors
creep in at each step of the calculation and add to the initial error made
when defining the geémetry of the assembly. Modern numerical analysis
(Morris, 1983) makes available a variety of techniques to prevent the
build-up of unacceptable errors and improve therefore the numerical
stability of a large—scale computation., See Fig. 4.6 for a schematic flow
chart of the elimination subroutine that has been used in all tests described
in this dissertation; the smallest acceptable number has been 10“”.

Only a little more effort is now required in order to obtain bases for
the four subspaces of the equilibrium/compatibility matrix.

Column space of [A], The ry columns of [A] that provide a pivot (marked *

in Fig., 4.5a) form a basis for this subspace.

Left-nullspace of [Al. - The bottom M=3n-c-r, rows of [E] form a basis for

this subspace. This follows from the fact that the equations [E]{t}=[f]{f}
are precisely equivalent to the original equilibrium equations (4.3), and the
bottom M equations then state that each of the bottom M rows of [f] is
orthogonal to {f}, See also Livesley (1973).

Row _space of [A]l. The upper r, rows of [R] form a basis for this space.

Nullspace of [A]. A basis for this subspace is found in the following

way. Conaider [A]1{t}={0}. Set t=1 for the first redundant bar and t=0 for the
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(a) (b)

0 A }
3n-c¢ A I 0000 I
0000000
0000000
b in—¢
Fig. 4.5 Diagram to show the way that the equilibrium matrix [A] together

with the identity matrix [I] is transformed by row-operations
into the 'echelon' form [A|I]. Pivots are found in columns 1, 2 and

5.

Choice of pivotal row:

Transformation of
pivotal row:

Transformation of
entries below pivot:

Fer rows i, it+1,...3n~¢, if the entry in column j - a,
say ~ 1is greater than the smallest acceptable
number, choose the largest entry of the row not in
celumn J = b, say - and evaluate a/b. OCtherwise skip
the row.

If the previous check was never satisfled the column
is dependent and the computation moves to column j+1.
Otherwise the piveotal row corresponds to the
greatest computed ratio. {This technique is called
scaled pivoting).

Pivotal row and row i are exchanged,

All entries of the pivotal row are divided by the

‘Ipivot. The entry of position (i,j) is now 1.

For rows. 1i+1,...3n-¢, if the entry below the

pivot 1is =smaller than the smallest acceptable
number, skip the row,

If the row can be considered proporticonal to the
pivotal row, set all i1ts entries equal to zeroc.
Otherwise subtract the entry below the pivot
multiplied by the pivotal row.

Fig, 4.6 Tranaformation of column j of [A]J. In the above description i-1

pivots have been found in the first j-1 columns, in previous
stages of the elimination; therefore the first i-1 rows and j-1
columns of [A] have to be disregarded.
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remaining s-1; and solve (uniquely) for the tensions in the non-redundant
bars. This 13 easily done bhecause [E] is an upper trilangular matrix, The
vector {t} so obtained is a base vector of the nullspace. The other s—1 base
vectors are obtained similarly by having t=1 for each of the redundant bars
in turn. Since the equations [AJ{t}={f}, [E]{t}n[i]{f} are equivalent, the
sclutions of [E]{t}={0} are the states of selfstress of the assembly.

Each of the four bases decribed above is just one possible choice;
according to the type of analysis that cne 1s golng to perform the most
convenient starting basis may be different, see Section 6.,1. For instance, the
set of M inextensional mechanisms that form a basis for the left-nullspace
might not show any properties of symmetry, which would be revealed by a

different treatment or by the choice of a different coordinate system.

4,3 An example

Figure 4.7 shows an assembly .of three collinear bars of egual length,
connected to a rigid foundation at nodes 1 and 4. The assembly is regarded as
lying in a plane; consequently the dimension of the joint space will be
2n-c=2xU4=4=4 (c=4 since joints 1 and U are fully constrained in the plane)

and b=3, The statical and kinematical variables introduced in Section 4,1 are

now:
£
t 2x e X2
a £ a Vo
(£} ty >, (£3=¢ 2YN, (e}=fep) and (d)=
£ f3x e X3
c £ c
3y, 3

By inspection, the equilibrium matrix of (4.2) is given by:

LI ]
1-1 0 1T-1 0]/1000
0 0 0 0 0100
[Al= thus [A|I]=
0 1 -1 0 1=-110010
0 0 O 0 0 0(0001

and by following the procedure described above, which here involves merely

the replacement of row 2 by 1Ix{row 3)-Ox{(row 2) and of row 3 by
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1x(row 2)-0Ox{row 3) one obtains

clearly r,=2 and so, by (4.4), s=1 and M=2. Thus the plane assembly of Fig. 4.7
is statically and kinematically indeterminate with one state of selfstress;
bar ¢ is redundant; and there are two mechanisms.

The nullspace of [A], i.e. the one state of selfstress, 1s obtained by

back~substitution from

1 =1 0Oi{t 0
0 1 =-1i4t 0
bf = so: f{tl={1 1 11T
0 0 011 0
¢ 0 0 0

The other three subspaces are found exactly as described above, and are
displayed in Fig. 4.8, The various features pointed out in Table 4,1 may be

verified by inspection, and the orthogonality of the subspaces may be checked

directly.

4.4 Rigid~body and internal mechanisms

The scheme described in Section 4.2 gives, in particular, M Iindependent
inextensional mechanisms of the assembly which span the left-nullspace of the
equilibrium matrix [A]. In the case where the assembly is unattached to a
rigid foundation, these will obviously include six independent Inextensional
motions of the assembly as a rigid-body in space, in addition to any
'internal' inextensional mechanisms which the assembly may possess, It is
clear that the prbcedure described above does not make this distinetion, and
that a new algorithm is needed to segregate the rigid-body mechanisms from
the others. The following scheme does this by treating any framework as a

- rigid body, and it can cope with assemblies having any number between zero and
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Fig., 4.7 Plane assembly analysed in Section U.3.
Bar space Joint space
0100
111] }s=1 ) looon1 =2
1 © 1 -1
-1 1 {b=3 0 O ]2n-c=4
o -1 o 1
) 0o 0
r,=2 L .
A Ny e
rA=2
Fig, 4.8 Bases of the four subspaces of the assembly shown in Fig. 4.7. In

this schematic representation orthogonal subspaces are denoted
by row and column vectors.
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six of rigid-body motlons,

Consider the previous general pin-jointed assembly, having a total of ¢
kinematic constraints to a rigid foundation, and let the locations of the
Joints in the original configuration be described, as before, with respect to
a fixed system of cartesian coordinates (0Q,x,y,z). Any rigid-body
displacements of the assembly may be described by one translation and oné

rotation vector {no}={n0x Noy nOz}T and {r}={rx r rZ}T respectively. Here

Y
{no} represents the displacement of that point of the assembly which lies at
the origin of the coordinates in the original econfiguration; {r} is the
rotation about this point. In such a rigid-body motion the displacement of a

point i having position vector {q}={xi Yy Zi}T is given by
{xy ¥4 zi}T={no}+{r}x{q} (4.12)

Now if 1 1s a joint of the assembly which is fully restrained to the
foundation, the three kinematic conditions X;=y;=2z;=0 are imposed on any

rigid-body motion; they give three simultaneous equations:

Moy +Ziry~YirZ=0

nOZ+YirX-Xiry =0
If this joint had only two or one degrees of kinematic constraint, then only
two or one of the above three equations would apply. In this way, each of the
external constraints imposes one condition on {ny} and {r}, and hence the ¢

external constraints together give a system of ¢ equations in six unknowns:

[cl {E} =(0} (4.1%)

r

Here [C] 1s a cx6 kinematic matrix. The rank ro of this matrix indicates how
many of the external constraints effectively suppress rigid-body degrees of
freedom of the assembly; this rank can be determined by the procedure
described earlier in relation to the equilibrium matrix [A]. Thus the number

rb of rigid-body motions ia:

79




l"b=6"‘I“C (u.}B)

The independent solutions of the system of equations (4.14), which span
the nullspace of [C], provide a basis for the subspace of these rigid-body
motions in terms of the six scalar components of {ng} and {r}. These may be
used In (4.12) to obtain, for each of these motions, the components of

displacement of each joint of the assembly.

The next step is to find a basis for the m-dimensional space of internal

mechanisma, where
m=M-rb {(4,.16)

Since by definition the internal mechanisms are orthogonal to the subspace of
rigid-body mechanisms, the M mechanisms {d1},""{dM} computed in Section 4.2
have to be separated from their components in that subspace. Assemble the
nodal displacements corresponding to each rigid-body mechanism in the
(3n-e)xrb matrix [RB]. Any rigid-body motion can be expressed as a linear
combination of the columns of [RB], and in particular the 'rigid-body'

component of mechanism {d;} will be [(RBI{x;}. And
{di}'_[HB]{xi} (b1

is orthogonal to any rigid-body motion; hence [RB]T({di}-[RB]{xi})=O. Solve
this system of rb equations for {x;} and substitute into (4.17) to obtain the

component of {di} orthogonal to the subspace of rigid-body mechanisms:
{d; }-[RBI([RBIT[RB]) ~'(RB1T(d;] - (4.18)

This formula gives an answer in closed form to the problem. But the same
result can be achieved by orthogonalizing the rigid-body mechanisms to each
other, i.e. transforming the initial basis into an orthogonal one
{a1}p."[arb}, and subtracting from each mechanism its comﬁonents onto the

subspace of rigid-body motions:
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{di}={di}—gb SCMICRVENDIEN:
Jj=1
This operation transforms the initial mechanisms into a set of M internal
mechanisms, But only m of these are linearly independent; and the modified
Gaussian elimination described in Section 4.2 can be used to detect which
columns of the (3n-c}xM matrix [{d1}"" {dM}] are dependent on the others.
These are then suppressed and the remainder form the required basis for the

space of internal inextensional mechanisms of the assembly.

4,5 Stiffening effects of selfstress

The preceding description of the four fundamental vector Subspaces of the
equilibrium matrix of a pin-jointed framework and the computational scheme
for their evaluation in any given case are an essential preliminary to a
complete understanding of the mechanies of such assemblies. Most usual

engineering frameworks will prove to be kinematically determinate when

subjected to the anaiysis described and they can be treated without
difficﬁlty following the standard methods of Structural. Analysis: see e.g.
Parkes (1974) or Timoshenko & Young (1965). The reader will have noticed that
the approach described in Sections 4,1 and 4.2 is strongly biased towards the
force method of analysis, If the scheme described above is used to establish
that a given assembly is kinematically determinate, it would be wasteful to
dispose of all the results of those computations, states of selfstress in
particular, and to sﬁart again by assembling a conventional stiffness matrizx,
see Section 6.1.1. |

Some other assemblies will turn out to be kinematically indeterminate.

The study of how they respond to an applied loading is the main objective of
Chapter 6. But it is convenient here to take a necessary preliminary step in
the analysis by computing the total number of independent 1loads that a
preatressed assembly can carry.

In order to investigate further an assembly with s>0 and m>0 (for réasons
that will become clear later the rb rigid-body mechanisms will not be
considered) first give the assembly a state of selfstress, and then impart a
small amplitude to one or more of the internal inextensicnal mechanisms, In

its original configuration, of course, the assembly would be Iin equilibrium
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under zero external load, But when the geometry is altered slightly this will
no longer be true, in general, since the coefficients of (4.3) will have
changed. Indeed it has already been shown (Calladine, 1978, 1982) that in some
relatively simple examples a state of selfstress can 'stiffen' one or more
inextensional mechanisms. The key to the situation is the so-called
product-force vector (Pellegrino & Calladine, 1984) associated with any given
mechanism of a structure which sustains a given state of selfstress. For this
purpose, suppose that the state of selfstress does not change when the mode of
inextensional displacement is excited: certainly it need not change in an
assembly of elastic bars since, at least to the first order, the lengths of
the bars do not alter.

Rewrite the equilibrium equations (4.1) for an infinitesimally displaced

configuration to obtain:

[(xi+xi)_(xJ+Xj)]tp/lp+[(Xi+xi)‘(Xk+xk)]tq/lq=fix
[(Yi*'yi)"(Yj"'Yj)]tp/lp+[(Yi+Yi)‘(Yk+Yk)]tq/lq=fiy (4.19)
[(Zi+zi)_(zj+zj)]tp/lp+[(zi+zi)_(zk+zk)]t’q/lq=fiz

where Xy, ¥y» Zjsee are the components of displacement of joint i,... according
to the inextensional mechanism considered, and tp,". are now understood to
denote a state of selfstress. The external forces in (4.19) define the
product=forces associated with the state of selfstress and the inextensional
displacement imposed. Subtraction of (4,17), written 1in the original

configuration, from (4.19) gives:

pix=(x1—xj)tp/lp+(xi—xk)tq/lq
Piy=(Yi=¥ Pt/ 1ty =y )t/ (4.20)
plz=(ziwzj)tp/lp+(ziazk)tq/lq ‘
Equations of this type can be used, for each unconstrained component of joint
displacement and for each 1internal mechanism, to assemble a set of m

product-force vectors of dimension 3n-c:

{pelsevesipgd ' (4.21)
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For example, in the assembly of Fig. 4.7 the state of selfstress consists of a
uniform tension t. Let the product-forces be evaluated separately for each of

the two mechanisms already determined: by inspection they are proportional to

(p,}=(0 2 0 -1}7
{p,}=(0 -1 0 2}T

When each column is multiplied by the product of t and the (small) amplitude
of joint displacement, it gives the product-force vector.

The earlier analysis completed the c¢lassification summarized in
Table 4.1, and revealed a vector subspace of the load space, the column space
of [A} of dimension equal to r,, of "fitted loads" which could be carried by
the assembly in 1ts original configuration. This subspace can be supplemented
by the m~dimensional subspace of product-forces. The questlon is now: does the
sum of the two subspaces span the entire load space? One way of answering
this is to compare the dimension of this new subspace to 3n-c. A set of column
vectors that span it is certainly given by the (3n—c)x(rA+m) matrix [A']
shown in Fig. 4.9. V

Notice that the subspace of product-forces is quite different in
principle from the subspace of 'forbidden' loads, equal to the subspace of
inextensional. mechanisms, revealed by the initial analysis, That space
conslsts of those 1loads which cannot be carried in the original
configuration; but the product-forces are those loads which can be carried on
account of selfsfress when the inextensional modes are given small
displacements.

It is obvious without any manipulation that the rigid-body motions
develop zero produétfforces: the product—~force at any joint is a consequence
of relative rotations of the bars meeting at the joint, which are obviously
zero in any rigid-body motion. This is the reason why only product-forces
corresponding to internal mechanisms need to be assembled in [A']., When rb=0
[A'] is square; and it follows immediately that there is a possibility that,

when the assembly is allowed to distort in its inextensional modes it will be

able, after éll, to support a completely arbitrary set of loads, although the
amplitude of the resulting inextensional modes may not be acceptable in some

-applications, of course. This will be the case if the matrix [A'] is of full
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rank; the same ideas can be applied to non-square matrices [AY], but one needs

4

to exclude rb rigid-body motions and the corresponding loads,

For example, the assembly of Fig., 4.7 has

1 —1: 0 0

0 01 2 -1
[A']= !

0 14 0 0O

0 0,-1 2

and it is easy to see that rA}=M: hence this particular arrangement of bars is
capable of withstanding arbitrary vertical and horizontal loading at the
joints. The example of Fig 4.7 is, in fact, a primitive sort of cable net and
it has been shown already, see Calladine (1982) and Pellegrino & Calladine
(1984), that certain simple types of cable net can sustain a completely
arbitrary pattern of loads although they have a substantial _number of
mechanianms.

The computation of rA,is not the only way to evaluate the number of extra
load conditions that an assembly is enabled to carry in consequence of
prestress. In a different approach one can aim at the dimension of the
subspace intersection of the left-nullspace of [A]l] and the subspace of
product-forces, which contains the loads that - although not "fitted"—- can be
equilibrated through inextensional deformation., Some projection work along
the same lines as in Section 4.4 would lead to a solution in closed form.
However, for assemblies with a very small nqmber of mechanisms one need only

prove that there exists one product-force {pi} such that
(d5}(p;}>0 . . (4.22)

to demonstrate that the product—-forece associated with mechanism number 1 can
atiffen mechanism j.

Checking the sign of (4.22) is always a useful addition to the
computation of the rank of [A']. If the chosen state of selfstress is changed
to one of opposite sign the signs of all product-forces also change and the
“dot product in (4.22) theﬁ_becdmes <0, which denotes negative stiffness and

therefore an unstable case. Although the envisaged unstable case has been
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obtained here simply by changing the sign of a state of selfstress, which
would not be possible in a tensegrity structure (because, if one tries to
shorten - rather than lengthen - a bar the length of which is maximum, the
structure becomes 'floppy' and no prestressing is achieved), more elaborate
cases cah be found,

A paper by Kuznetsov (1979) has an example, shown in Fig, %10, which is a
variant of Fig 4,7 and also has s=1, m=2 but in which the dot products (4.22)
for the two mechanisms have opposite signs. This implies that one of the two
mechanisms is unstable whatever the sign of the selfstress; and in fact the
assembly is free to distort as a four-bar-chain with s=0, m=1. Compare this
with Fig, 2,12, ‘

A1l of this leads to the conclusion that an assembly with m>0 is not
stiffened by a state of selfstress if it can be recognized that changing sign

to the selfstress makes 'no difference’,

4,6 Infinitesimal mechanisms of first order

This secticn will giveva first estimate of the amplitude of 'inextensional’
displacements which can take place in a structure for which the matrix
methcds described above indicate kinematical indeterminacy. Specific
reference will be made to statically and kinematically indeterminate
frameworks, mostly of the type envisaged by Maxwell (1864) and discussed in
Section 2.1; this is because assemblies with m>0 but s=0 can usually undergo
displacements of finite amplitude, although the possibility of the "dead
points" of Figs 2,12 and 4.10 has to be borne in mind.

Tarnai (1980b) conjectured that 1t 1is only the infinitesimal
inextensional mechanisms that can be stiffened by states of selfstress. The
assembly of Fig, 4.7 which is stiffened by prestress, as well as the examples
in Section 4.7, illustrate this conjecture: a state of selfstress imparts
first-order stiffness to some mechanisms, but does not impart any stiffness
to others which are already known to be finite mechanisms.

How can one explain the mechanics behind this conjecture, and thereby
demonstrate that the conjecture is true?

.Consider,the assembly of Fig, 4.7, prestressed and subjected to a load in
the ﬁertical'direction. The assembly provides some stiffness against this

loading, because the change in geometry according to the inextensional
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Fig. 4.9

Fig, 4.10

independent
3In-¢ columns of [A] {{p;} . . {pp}

The general form of [A']., The left-hand ry columns represent the
column space of [A] (Sections 4.1.1 and 4.2), and the right-hand m
columns are the product-force vectors (Section 4.,5)
corresponding to the internal inextensional mechanisms, [A'] is
square in the case (rb=0) of assemblles properly constrained to a
rigid foundation.

e

A pin-jointed framework which is a finite mechanism, not an
infinitesimal one, although (A'] has full rank. See Section 4.5,

 From Kuznetsov (1979).
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mechanisms enables the‘prestressed bars to balance any vertical loads. The
assembly thus has some first-order stiffness. Therefore it absorbs scme
energy as_the load increases; and this energy is stored in the assembly in the
only possible way, as strain energy associated with a second—order elongation
of the bars. In this example it 1is eclear from Pythagoras! theorem that
second~order changes of length are needed .for the distortion of this
heehanism. It 1s also clear that this type of second-~order atretching will in
general tend to increase the level of prestress in the assembly, so that the
relationship between transverse load and transverse deflection will in
general be non-linear: it is only linear for sufficiently small deflections
{see Chapter 6)., When the assembly 1is prestressed, the transverse
displacement which gives, geometrically, second-order changes in the lehgth
of the bars also gives a change in the strain energy of the same order, and
thus imparts the first-order stiffness which is detected by the matrix method
of Section 4,5, | )

| The conclusion is that any first-order stiffness which a state of
selfstress imparts to an inextensional mechanism may be taken as evidence
that the geometry of distortion in fact requires second-order changes of
length in the barsf If no first-order stiffness is detected by this met hod,
then the inextensional mechanism is either a second~ or higher—order
infinitesimal mechanism or a finite mechanism, see Section 5.1. Tarnai's

conjecture is thus confirmed.

4.7 Applications

This section looks at some applications of the methods described earlier in
this chapter..All of the computations have been performed by means of a
digital computer and the two Fortran programs CEAN1 and GEAN2 described in
Fig. 4.11. Most of the figures have also been drawn by the computer. In order
to highlight some common features, the examples are divided intd four groups.

Plane trusses, Two types of Dixon linkages have already been encountered

in Section 2.5, see Fig. 2,20, Starting from the simpler case of Fig., 2.20a it
can be seen that it satisfies Maxwell's rule: n=6, b=9, therefore 2n-3=h; but a
more complete -analysis of it was done using GEAN2. The layout_shown‘in_
_Fig.1L12 was tested, with _the- rigid-body motions suppressed by fully

constraining node 1 .and only allowing motions in the x direction for node 2;
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GEANt: Geometric analysls of 3D trusses

A12: inputs equilibrium A13: inputs nodal coordinates
matrix, and connectivity.
A21: assembles equilibrium
matrix.

A22: transforms equilibrium
matrix into echelon form and
evaluates Pps 3y M.

|
A31: computes 3 states of
selfstress.

Al1: computes b rigid-body
mechanisms,

Al2; computes m internal
Imechanisms.

——output for graphic subroutines.|
A51: checks correctness of
evaluated states of selfstress
and mechanisms.

Stop, unless coordinates and
connectivity have been input.

AT1s evaluates stiffening
effects of each state of
selfstress by evaluating rg.,
for 8 different sets of
product-forces,

Stop.

Fig. 4.11a Schematic flow chart of the program GEAN1 showing only
essential subroutines. Note that the analysis can be started
from a given equilibrium matrix by calling the subroutine Al1Z,
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GEAN2: Geometric analysis of 3D trusses

without rigid-body mechanisms,

INP:

inputs type of analysis
required, joint coordinates and

bar connectivity.

EQAN: analyses equilibrium EQMAT: assembles the
matrix [A], in order to compute equilibrium matrix [A],
rpp M s and detalls of
mechanisms and states of ) ELIM: transforms the
selfstress, equilibrium matrix into an
. ] echelon form and records
CHK: verifies the correctnessp—p—— all the operations
of mechanisms and states of performed in a record
selfstress which have been matrix,
computed, [
EQIND: assembles the
STIFF: evaluates stiffening-””,”‘independent columns of [A]
effects of each  state of and stores them in [A'].

for 3 different
product—-forces.

sets

selfstress by evaluating rpu

of

Stop.

Fig. 4.11b

PF: computes product~forces
and stores them in [A'].

R

PRODUCT: computes scalar
product of each mechanism
by the corresponding
product-force (to check
signs).

ELIM1: computes Pan

Flow chart of the program GEANZ.
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¢} Node no. X X Z  Xe ya Ze Bar no.] Node no. Node no.
1 -1. 0 0 1 1 1 1 1 y
2 S0 0 0 1 1 2 1 5
3 2. O 0 0 0 1 3 1 6
i 6 =5 0 0 0 1 | 2 uy
5 o 1. © 0 0 1 5 2 5
6 0 2. 0 0 0 1 6 2 6
' 7 3 4
8 3 5
9 3 6
Fig, 4.12 Dixon's linkage of the first kind (see also Fig. 2.20a) shown in

its original position a). The linkage has been redrawn in b),

with the infinitesimal mechanism shown in broken lines.

geometrical data for GEAN2 are shown in

The

the last three

columns of the array on the left define the nodal constraints

(free=0, constrained=1).
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obviously all nodes are 'constrained' to lie in the x-y plane. The geometrical
data for the program are shown in Fig., 4.12¢c. The 9x9 equilibrium matrix has
r‘A=8; and so m=s=1, The components of the infinitesimal mechanism are
displayed in Fig. 4.12b. The state of selfstress involves tensile forces in
all the bars on the external contour, and in bar 5. There is only one
product—-force and its dot product with the mechanism is zero: prestress does
not provide first-order stlffness, hence no second-order elongations are
associated with the mechanlism. This result is confirmed by the analysis of
the matrix [A'] of Fig. 4.9: r,,=8 so the product-force lies in the column
space of [A].

One Dixon linkage of the second type (Fig. 2.20b) was also tested; It Is
easy to verify that the assembly in Fig. 4,13 satisfies all the geometrical
conditions listed in the caption to Fig. 2,20b. A11 nodes were constralned to
the x-y plane, 6 belng fully constrained and 1 only allowed to move in the X
direction. The results of the analysis were essentially the same as above. All
of this agrees with Section 2.5: in fact both linkages are finite mechanlsms,

'Ring! trusses. Figure 4,14 shows an assembly like the one already

examined in Sections 2.1 and 2,4 (see Fig. 2.4a): a regular four-sided 'ring' on
a level rigid base. The 12x12 matrix [A] is found to have rA=11, and so m=3s=1,
The simple iﬁextensional mechanism involves the upper square distorting into
an out—-of-plane diamond shape, as shown in Fig. 4.14b. There is one 'forbidden'
load system (=mechanism), consisting of equal horizontal forces acting
inwards along one of the diagonals of the top square and outwards along the
other. The product-force consists of horizontal foreces acting in the
direction of the tangent to the square circumcirele, and following a common
direction; 1t 1s therefore orthogonal to the 'forbidden' load condition. Hence
r'A,=11, and this ring behaves like the plane mechanisms examined above. In
fact, this assembly can undergo finlte inextenslonal distortions, as one can
verify with a cardboard model or by elementary trigonometry.

The assembly in Fig. 4.15 (ef, Fig, 2.10) consists of three rings like that
of Fig. 4.14 on top of each other. It has been pointed out already that this
assembly satlsfies Maxwell's rule but is statically and kinematically
indeterminate; the computer analysis shows that '"A=35 and s=m=1. It alsoc shows
that the bar tensions due to _the state of selfstress vanish in all rings

except the bottom one; while the inextensional mechanlism only involves
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a)

Fig. 4,13 Dixon's linkage of the second kind (see also Fig. 2.20b). b)
shows the ilnextensional mechanism in broken lines.
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Fig. 414 '‘Ring’ asgembly consisting of a top square, with each corner
connected by two bars to a level foundation. b) shows its free
mechanism of inextensional displacement.

(a)

Fig., 4,15 Cylindrical tower consisting of three rings similar to Fig. 4,14,

- The computer analysis shows that the bottom ring 1is statically

indeterminate, with one redundancy, while the top ring 1is
kinematically indeterminate,
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displacements of the top ring. Clearly the product—force is zero and r'A,=35.

The ring assembly shown in Fig. 4,16 has most of the features of the ocne
shown in Fig. 4,14: in fact it satisfies Maxwell's rule with 3n~c=b=12 and its
equilibrium matrix has ry=11, too. The mechanism is shown in Fig, 4.16b; the
state of selfstress is also easy to visualize: two parallel four-hinge-arches
carry compressive forces while the other two are in tension. Again the
product—force has only horizontal components and r,.,=11; in fact this
structure is a finite mechanism too.

Two variants of Fig, 4.16 are shown in Figs 4.17 and 4.18. Both of these
trusses share the same horizontal projection but, while the foundation joints
1ie on one horizontal plane in Fig. 4.16, in Fig. 417 the 'lega' are shorter in
one direction than in the other; and in Fig. ll;18 the square lies half-way
between the horizontal planes containing the foundation joints. Both variants
have r‘A=11, and m=s=1 as in the ring considered first, but their mechanism is
infinitesimal of first order as r'A.=12.

Some more trusses that satisfy Maxwell's rule. The truss in Fig, 4.19, a

plan view of which is ;;hown in Fig. 2.21a, consists of two pairs of adjacent
quadrangles, lying in different horizontal planes and interconnected by
diagonal members. In fact the truss is made out of five tetrahedra and four
half-octahedra with various faces in cdmmon; the description of the
structural geometry in these terms can be useful in understanding some of its
kinematical properties. The tetrahedron in the middle of the framework - with
vertices in nodes 4,6,7,9 of Fig. 2.2ta - 1is a rigid structure and therefore
all rigid-body motions can be suppressed by properly connecting it to the
foundation. Six external constraints have been introduced in the analysis for
this reason, but the pictures do not show them. The assembly has n=12, b=30 and
¢=6, hence 3n—c¢=b=30; the 30%30 equilibrium matrix has rﬁ?29, thus m=s=1. The
mechanism deforms the quadrangles _in a twisting mode, aé shown in Fig. 11.1_9b.
Look at the plan view of Fig. 2.21a: the state of selfstress has equal
compressive forces of two units in the bars joining nodes (6,7) and (4,9},
which are the edges common to adjacent quadrangles; tensile and compressive
unit axial forces alternate in the inter'nalrdiagonals. For instance (1,4) and
(2,4) are in compression while (4,7) is in tension; the eight bars on the
outside of the figure (1,2),(2,5),.. (3,1) are in tension;-the remaining bars

carry zero tension. The dot product between the product=force due to the
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Fig. 4.16

Fig. 4.17

Modified version of Fig. 4.14., Here there are eight foundation
joints, all of which lie in a plane. b) shows the 'free'
inextensional mechanism,

Variant of Fig. 4.16. Four of the foundation joints lie on a
higher horizontal plane than the remainder. Unlike the assemblies
in Figs 4.14 and 4.16, this assembly is an infinitesimal
mechanism, of first order.
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Fig, 4.18

Variant of Fig. 4,16, The foundation joints are now at equal
distance above and below the horizontal plane containing the

square. This assembly is an infinitesimal mechanism, of first
crder,
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a)

b)

Fig., 4.19 "Tetrahedral-octahedral" truss, For the sake of simplicity, the
internal tetrahedron - drawn with thicker lines — has not been
allowed to move, See Fig. 2.21a.
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above tensions and the mechanlsm is positive, therefore the mechanism is
infinitesimal of first order. This conclusion cah be verified by means of a
physical model of this structure.

The triangulated hyperbolic paraboloids of Figs 4.20, 4.21 and 4.22 have
been discussed already in Chapter 3; in fact their geometry fits with the
geometrical description of Sectlon 3.1. Each of these assemblies satisfies
Maxwell's rule but the computer analysis shows that, although assemblies with
two and three sides (shown in Figs 4.20 and 4.21) are statically and
kinematically determinate, the hyperboloid with four sides (Fig. 4.22) has

s=m=2, This result is in agreement with the formula s=m=(1~2) for 1 even found

in Section 3.4.1. The two mechanisms produced by the computer analysis in thia
case are shown in Figs U4.22b and 4.22c. Of the two states of selfstress
produced, the first one coincides with Fig. 3.3b while the second one can be
obtained by adding up the two sets of tensions in Fig 3.3, The analysis of the
matrices [A'], conthining in their last two columns the product®forces due to
either of the above independent states of selfstress, produdes an interesting
result. Only the second of the states of selfstress provides (equal)
first~order stiffnesses to both mechanisams, which are therefore
infinitesimal; but, in contrast, the first state of selfstress can only cause
an increase by one of the rank of [A'l.

Tensegrities. Only the first of the frameworks to be presented in this

group satisfies Maxwell's rule, as all the others have fewer bars than would

be required. Yet all of them have one state of selfstress, which involves

tensile forces on the 'outside' of the framework and compressive 'inside', as
in proper tensegrity systems. (The 'sign' of the selfstressing forces cannot
be reversed, as noted at the end of Section 4.5). After the initial
considerations on the formfinding of the "Simplex" made in Chapter 2 (see
Fig 2.17), here it will be assumed that only one specific configuration is of
interest, which i3 the one shown in Fig. 2.17b. A further examination of the
ways in which this configuration can be determined will be deferred until the
next chapter. All rigid-body motions of this assembly can be suppressed by
imposing six kinematic constraints on the motion of the bottom triangle so
that n=6, b=12 and c=6. The equilibrium matrix [A] is 12x12 with r,=11; hence
m=s=1. In the inexﬁensional motion .shown in Fig. J'4.23b the top triangle

rotates about- a vertical axis while translating vertiecally; the
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Fig, 4.20

Fig. 4.21

Triangulated hyperbolic

paraboleid,

with 1=2,

described in Section 4.6 shows that s=m=0.

The

s

analysis

Triangulated hyperbolic¢ paraboleid, with 1=3. Some of the bars
are not shown. The analysis described in Section 4,6 shows that

S=m=0-
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b}

=== W

Triangulated hyperbclie paraboleoid, with 1=U, Some of the bars

are not shown. This assembly satisfies Maxwell's rule but s=m=2,
b) and ¢) show the two infinitesimal mechanisms.
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a)

b)

Fig, 4,23 "Simplex", cf. Fig. 2.17. b) shows the infinitesimal mechanism.
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self-equillbrated tensions consist of tensile forces in all bars on the
cutside of the "Simplex", and compression in the three diagonals, [A'] has
full rank and therefore the mechanism is infinitesimal of first order. This
result, that is a common feature of tensegrities (Calladine, 1978), 1s8 no
surprise after the experimental studies conducted by Motro (1983, 1984).

The next structure, Fig. 4.24a, has nodes which coincide with the vertices
of a cube, and the outside bars also coincide with its edges; four inner
diagonals complete the structure. This assembly has been studied 'free' in
space, with n=8, b=16 and ¢=0, The equilibrium matrix has dimensions 24x16; its
analysis shows that r'A=15, =1, M=9. Clearly six of the mechanisms are
rigid-body motions and only the three Internal ones (m=M-6=3) are of
interest. The internal mechanisms, computed along the lines of Section 4.4,
are also shown in Fig. 424, In the first mode (Fig. 4.24b) top and bottom
squares rotate through equal angles about a vertical axis anticlockwise and
clockwise, respectively. In the second mode ({Fig. 4.24¢) top and bottom
squares deform into two plane rhombi. Only in the third mode (Fig. U.24d)
these squares undergo an out—-of-plane deformation: two opposite vertical
edges go up, while the other two go down. The state of selfatress prescribes
tenslle forces in all the bars on the outside, and compression in the
diagonals. When the product=forces are computed and assembled in [A'], it is
found that r,=12; and thus the (prestressed) assembly has first-order
stiffness against any lcad condition which is externally equilibrated.
Therefore all three mechanisms are Infinitesimal of first order. Calladine
(1978) built and inspected a physical model of this truss and reached the
same conclusions although the mechanisms he considered were all of the type
shown in Fig. 4.24d; these are obviously a linear combination of the ones
obtained in the present analysis and define an equivalent basis of the
1eft-nulispace of [Al. -

The last example of this section ls the truncated tetrahedral assembly of
Fig. 4.25 (see also Fig. 2.14) first developed In 1952 by Della Sala., An
investigation of this structure by Calladine (1978) has been summarized in
Section 2.4; this study can be possibly regarded as a final test for the
analytical approach developed here. The starting problem 1s obviously the
evaluation of the initial geometry of the assembly: t.his will be assumed to be

known a priori at present (Section 5.2 will glve details on the simple
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a)

Fig, h.21

Tensegrity cube. This is one of the assemblies that were examined
by Calladine (1978). An alternative, equivalent, set of
mechanisms can be obtained by displacing only parallel edges, as

in d).
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Fig, 4,25

plan view.

Plan view and elevation of truncated tetrahedron studied in
Section U.7. In a), note the top hexagon and the three triangles
connected to it; the bottom triangle lies in the middle of the
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techniques that one may use to generate the nodal coordinates In this and
gimilar cases). The bottom triangle has been connected to a rigid foundation
by six constraints. By inspection, n=12, b=24 and ¢=6; the 30x24 matrix [A] has
PA=23; hence m=T7 and s=1. All seven Internal mechanisms have been computed'in
the usual manner, but only two representative ones are shown in Figs 4.26 and
4,27. The mechanism in Fig., 426 is actually the same as one described in the
paper by Calladine, with one triangle rotating about an axls of three~fold
symmetry of the initial geometry while the rest of the assembly does not move.
The second mechanism reproduced here is a rather intricate combilnation of
simple motions of the type described above. The state of selfstress has
tensions of 1.5 units in the sides of the triangles (twelve bars in all), 2.066
in the remaining si1x bars on the outside of the framework, and compressive
forces of 2.25 units in the six diagonals. The seven product—-forces are
independent of the 23 loads in the column space of [A], hence r,=30. All of

this is in complete agreement with Calladine (1978).

4.8 Discussion

The theory developed in this chapter provides a comprehensive coneeptual
framework for the work started by Mdbius (1837) and developed intermittently
since then, as described in Chapter 2. It also clarifies and develops recent
studies by Kuznetsov (1975, 1979), Calladine (1978) and Besseling (1978, 1979,
1981); a recent paper by Pellegrino & Calladine (1986) was the first attempt
to divulge it.

It is noteworthy that Section 4.1 starts off from the definition of two
‘geometrical' matrices and then pursues a line which would appear to be rather
unorthodox to most structural analysts of the present day, sinece the
displacement methed of énalysis appears to be used almost universally. Using

the terminology and symbols of Section 4,1, the stiffness matrix - which is

crucial for this conventional type of approach - of a framework with n nodes,

b bars and ¢ constraints 1s a square matrix [K] of dimension 3n-c¢ such that
[K1fd}=(F} (4,23)
‘see ,e.g., Livesley (1975) or McGulre & Gallagher (1979). This matrix can be
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Fig, 4.26

Plan view and elevation of one of the seven infinitesimal
mechanisms of the truncated tetrahedron shown in Fig. 4.25. In
this particular mechanism, one of the triangles rotates about an
inclined axis of three~f'old symmetry.
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Fig. 4.27 Plan view and elevation of one of the seven infinitesimal
mechanisms of the truncated tetrahedron shown in Fig., 4.25.
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constructed by performing various operations on the equilibrium and
compatibility matrices; and it 1s a linear operator that/transforms any
(3n=c)-dimensional vector {d} into a vector {f} of the same dimension.
Further examination of this transformation in terms of the present ildeas
would be a tople worth investigating in some detail. Here it will be noted

only that the solutions of-the system of equations

[K]1{d}={0} (4.24)

are all sets of compatible nodal displacements in equilibrium without loads,
and hence are the inextensional mechanisms of the assembly (alsc equal to the
'forbidden' load conditions in the left#nullspace of [A], see Table 4.1). The
formulation (L.24) may lead numerically to a rather unstable method, yet it
provides a way of obtaining some of the present results from a formulation
which is widely used. Once m {or M) is known, s can be computed from {2,17) but
this is all that can be obtained from [K].

An essential feature of the present work 1is that all the vital
information about the behaviour of a structure can be obtained from an
analysis of the equlilibrium ‘matrix. It seems unlikely that the same
information can be abstracted from the conventional 'stiffness' formulation

without conaiderable effort.
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5. Further analysis. Formfinding

Although essentially self-contained, this chapter answers two questions left
over from Chapter 4, Its first section deals with statically and
kinematically indeterminate frameworks in which the activation of cne of the
mechanisms involves bar elongations which are of tﬁird— or higher-order in
the magnitude of the glven displacement, and also provides some examples of
them. The present approach follows an entirely different route from that of
Chapter U4, and leads eventually to a technique of analysis that - unlike the
cne based on Linear Algebra - can be refined according to the needs of the
problem in hand. The second section tackles the formfinding of some of the
tensegrity systems encountered in Section 4,7, i.e. it determines the shape In
which an assembly of assigned ‘connectivity' 1is able to sustain’

self-equilibrated states of tension.

5.1 Infinitesimal mechanisms of higher order

The linkage of Fig. 5.1a is a statically and kinematically determinate
two-dimensional assembly in which the (rigid) triangle 1 2 3 1s connected to a
rigid foundation by three members which do not meet in one point. If A and B
coincide, see Fig., 5.1b, 12 3 can rotate about A: the assembly has now one
mechanism and one state of selfstress, as demonstrated by the analysis of
Chapter U4, This analysis also provides the vectors indicated in the caption
of Fig., 5.1. It is intuitive that such a linkage cannot undergo very large
displacements if the member lengths are to be preserved; this is confirmed by
the computation of the rank of [A'], equal to 6, and is most easily checked by
evaluation of the dot product: {product-force}T{mechanism}%1.875 (>0; of
course, reversing the signa of the selfstressing tensions would give negative
stiffness). The state of selfstress can therefore impart first— order
stiffness to the linkage; this means - as noted elsewhere - that the 'small!
displacement indicated in Fig, 5.1 is associated with second-order bar
elongations, _ 7

Now consider the linkage of Fig. 5.2a, which is obtained by moving point 5
of Fig. 5.1b to a different position, still collinear with A3; and also the one
in- Fig. 5.2b where both 3 and 5 are rin different positions. These two

assemblies are also statically and kinematically indeterminate, because all
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Fig. 5.1

Node no. X v
1 0. 2,
2 2. 2.
3 2. 1.
i 0. 0.
5a 2.5 0.
5b 3. 0.
6 6. 0.

5 6

Plane linkages examined in Section 5.1; their nodal coordinates

are indicated above.
a) has 2n=b=rﬁ=6, and hence it is statically and kinematically

determinate.
b) has 2n=b>rA=5, hence it 1s statically and kinematically

indeterminate, with m=s=1. The components of its mechanism are
(05 0 05 1 1 13T

and the state of selfstress (tension coefficients) is
(=25 ~.50 .50 +.50 =.25 +1.00}

The corresponding product force is:
(=375 0 =375 =750 +1.500 +1.500} "

It is shown in the text that b) is an infinitesimal mechanism,
of first order,
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Fig. 5.2a

Node no, y
1 0. 2.
2 2. 2.
3 1.5 1.5
4 0. 0
5 4,5 -1.5
6 6.

Plane linkage examined in Section 5.1. It has 2n=b=6>r1A=5, hence
it is statically and kinematically indeterminate, with m=s=1, The
components of its mechanism are

{05 0 05 1 1 13T
and the state of selfstress (tension coefficients) is

(-4 -8 8 8 -4 1}T
The eorresponding product-foree is

{6 0 -6 ~12 9 93T

It is shown 1In Section 5.1.2 that this . linkage is an
infinitesimal mechanism, of order two.
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the members connecting the triangle to the foundation meet in one point; this
is confirmed by the the results of the analyses of the respective equilibrium
matrices, An unexpected result of these calculations is that rﬂ,=rﬂ=5 in both
cases, which can be verified as the product of product-force by mechanism
gives zero. Does thilis contradict the 'intuitive' statement above and imply
that the two linkages are finite mechanisms? The answer is no.

These assemblies have been provided by J.M. Prentis for their special
characteristics. In the first assembly (Fig. 5.2a) node 5 coincides with the
centre of curvature of the path described by node 3 so that no second-order
elongation of bar 6 is required; the second assembly (Fig. 5.2b) also
satisfies the above condition but 3 is now alsc a point for which the rate of
change of path curvature vanishes, hence no third-order elongation of bar &
takes place. These are therefore examples of structures 1in which an
infinitesimal distortion provokes only third-order and fourth-order
elongations of bar 6, respectively. All of this assumes that no change of
length occurs in the remaining members of the linkage.

Although kinematically indetérminate layouts that one encounters in
practice may well prove to have the properties detected above, these
properties seem to have received very little attention in the past, apart
from the rather theoretical studies deseribed in Section 2.5, A suitable
starting point for the present study is the following classification proposed
by Koiter (1984} and Tarnai (1983a).

Consider a structure which is kinematically indeterminate, with m=1; its
mechanism can be either finite, in which case "there exists a finite motion
such that the elongation of every bar is zero" (Tarnai, 198%a), or

infinitesimal Iif the activation of the mechanism provokes some bar

elongations. Infinitesimal mechanisms can be classified by considering the
MeLaurin expansion of the elongation of one ¢of the bars in the assembly - on
the assumption that the remaining bars are ¢f infinite axial stiffness - in

terms of a displacement parameter &:
e(G);a16+a262+a363+... : (5.1)

where the coefficient a =0 if & activates an infinitesimal mechanism. "An

infinitesimal mechanism of order 'n has a1=aé=".=an=0'but apy 10" (Tarnai,
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1984a), This definition is in agreement with Connelly (1980). Tarnai (1984hb)
has constructed the structure of Fig. 5.3 as an examplé that can turn itselfl
into a mechanism belonging to any of the defined categories. Tarnai (198Y4a)
has also pointed out that, although a finite mechanism is alSo an
infinitesimal mechanism of infinite order, for which all the terms of (5.1)
vanish, the McLaurin expansion (5.1} is unsuitable to distinguish between
finite and infinitesimal mechanisms of infinite order.

According to the c¢lassification proposed, the assemblies of Figs 5.1b,
5.2a and 5.2b are of first, second and third order, respectively.

Te classify a kinematically indeterminate framework one can use the
matrix method of Chapter U4, or just compute the dot product indicated ahove,
to decide if the mechanism is of first order. If rp=ra., the mechanism is
either infinitesimal of order 22 or finite; and thlis may already be an answer
godd enough for practical purpeoses. If more precise information is needed one
may think of computing the c¢oefficients of {(5.1) by expanding in a power
series the elongation of one particular bar of the given framework, while the
lengths of the remaining members are kept fixed. This requires an ad hoc
formulation for each different configuration and it may well prove to be
unfeasible in case of large three-dimensional structures.

An approach which is sufficiently general, and which might be proved to
be equivalent to the one described above, is based upcn the analysis of the
stability of the assembly in 1ts initial conflguration - .an i1dea first
appeared in Kuznetsov (1975). The following description uses the terminology
which 1s standard 1n investigations of elastic stability: see, e.g., Thompson &
Hunt (1973, 1984). It is intuitive that any kinematically iﬁdeterminate
framework — now regarded as an assembly of linear-elastic bars - which has a
positioﬁ of stable equilibrium, under no loads, in its criginal configuraticn

is an Infinitesimal mechanism. The order of the mechanism is related . in a

simple way to the order of the analysis required to ascértain that the given
configuration is stable. The mechanism is finite if the initial configuration
is of neutral equilibrium.

ansider a space framework which has m=1. The analysis of the stability
of this assembly c¢an be done, in general terms, by locking at its Total
Potential Energy (Thompson & Hunt, 1973): therefore the initial step must be

the introduction of this_funotion.
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Node no. X y
1 0. 2.
2 2. 2.
3 2. 1.0
y . 0.
5 18. { —-185,
6 6. 0.
Fig. 5.2b Infinitesimal mechanism of third order examined in Section 5.1.

This plane linkage has m=s=1, the mechanism components are
{0.50 0 0.50 1 0.75 0.75}T

and the state of selfstress {(tension ccefficients) is
{-.750 -2.25 3 3 -.750 .750}"

The corresponding product-forece is

{=1.125 0 =1.125 ~2,25 2.25 2.25}1

-]

Fig. 5.3 Example proposed by Tarnai (1984b): bar AB can rotate about A
while B slides in the rigid slot of equation
- n+1 =1/¢2 :
r(¢)=R+C,¢ '+C,e .
The following cases can be obtained:

C,»0, n=0 ~> the structure is not a mechanism
C;=0, n21 => mechanism of order n .
C,=0, C,=0 -> mechanism of « order

C,=C,=0 => finite mechanism,
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In the initial stress-free configuration let node i have coordinates Xi’
Yi, Zi; consider a small distortion of the assembly which brings node 1 to
(Xi+xi), (Yi+yi), (Zi+zi). Geometrical compatibility obviously requires that
the lengths of the connecting bars also change By corresponding amounts, and

the elongation of bar p (see Fig. 4.3) linking nodes i and j is ep=(lp)new-lp,

where: lp=/(xi_xj)z+----'
(1) pew™/ (X% =X =xy) %+, .=
=\/lp2+2[(xi“xj)(xi-xj)+, . ']+(Xi_xj)2+- .

and the work absorbed by this (linear-elastic) bar during the deformation is:

(AE/Zl)p{/lp2+2[(Xi—Xj)(xi—xj)+...}+(xi“Xj)z+...-lp}2

The strain energy in the whole assembly is obtained by adding up the
contributions from all members. As there are neither applied forces - hence
the change of potential energy of the external loads is gzero - nor any
initial prestress - hence the strain energy associated with the initial
configuration is zero - the strain energy/elastic work absorbed described

above coincides with the Total Potential Energy (TPE):

TPE= %§=1(AE/l)p[/1p2+2[(Xi—Xj)(Xi-xj)+...]+(xi—xj)2+...-lp}2 (5.2)
The initial configuration of the framework is of stable equilibrium if it
corresponds to a local minimum of TPE; it is of neutral equilibrium if there
exists one path starting from it along which TPE vanishes identically. This
allows a classification of mechanisms in terms of an analytical condition on
a function of 3n-c variables. However, one last problem has to be dealt with
before.any calculation can be started: the initial problem looks 'purely
geometrical' but the function in (5.2) depends upon the elastic constants of

the bars. This contradiction has its roots in the very definition of

structural mechanisms. Strictly speaking a purely geometrical analysis of the
rigidity of an 1ideal assembly whose rods are 1lnextensible would only

segregate finite mechanisms from rigid structures. For present purposes the

bars of the assembly must not be absolutely inextensible although the actual

115




value of their elastic constants is of no consequence because TPE is the sum
of b non-negative definite functions and the whole point of the analysis is
the identification of paths on which TPE, and hence all b terms of the
summation (5.2), vanish within a chosen degree of accuracy. In conclusion it
can be assumed that (AE)p=1 in (5.2).

The next subsection attempts the standard textbook analysis associated
with the computation of an analytical minimum; this will clarify the points
described above hut will also show that realistic situations cannot be
tackled in this way. A more cunning technique will therefore be developed and
tested on the linkages of Figs 5.1b and 5.2a. In case of kinematlically
indeterminate frameworks with m>% everything said above is still valid for
each of the mechanisms, separately; but further work is required to assess the

validity of the computational procedure in Section 5.1.2,

5.1.1 Analysis of TPE using total differentials

The analysls broadly indicated in the previous secion 1s now developed and
applied to the two—bar plane linkage of Fig. 5.4, The Total Potential Energy
can be obtained by subsfituting the nodal coordinates of 1,2,3 into (5.2); or
alternatively by considering the bar elongations due to an arbitrary change

of configuration:

eq=/ (1+x)24y2-1, ey=/(1-x)2+y*~1 *

g2/ 1 =2+2x+x2+y?-2/ 1 +2x+x%+y?

(5.3)
€52/ 1,=2-2x+x2+y =2/ 1-2x+x*+y*

from which, assuming AE=1, TPE=(e12/l1+e21/12)/2. The results of the rather
laborious computation of all the derivatives of TPE with respect to the
variables x,¥, in the initial configuration x=y=0, are displayed in Table 5.1.
This is the raw material for the analysis,

The linkage of Fig. 5.4 is certainly an infinitesimal mechanism, therefore
its TPE should be minimum for x=y=0. The McLaurin expansion of TPE can be

written (Fiorenza & Greco, 1978) in the form:

TPE(x,yy=dTPE+d2TPE/2!+d*TPE/3!+... (5.4)
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“1st order 3TPE/3x=0 3rd order 3%TPE/Jx*=0

oTPE/3y=0 3°TPE/3x23y=0
2nd order 32TPE/3x2=2 9*TPE/3x9y?=0

3?TPE/9x3y=0 - 9*TPE/3y°=0

9*TPE/9y?=0 4th order 3*TPE/3x*=0

3" TPE/3x%3y=0
3" TPE/9x%5y2=—1
3"TPE/3x9y%=0

Table 5,1 *TPE/3y"*=6

where:
dTPE=[(8TPE/8X)dx+(8TPE/8y)dy]x=y=0=O
dzTPE=[82TPE/3x2)dx2+2(azTPE/BxBy)dxdy+(azTPE/ayz)dyz]xzy=o=2dx2
dsTPE=[(33TPE/3x3)dx3+3(83TPE/8x23y)dx2dy¥ (5.5)

+3(9°TPE/3x3y?)dxdy?+(3° TPE/3y? )dy*®] =0

x=y=0
d"TPE=[(8“TPE/8x“)dx”+H(B“TPE/ax33y)dx3dy+6(B“TPE/szayz)dxzdy2+

+H(B“TPE/Bxaya)dxdy3+(B“TPE/ay“)dy“]xzy=0=—4dxzdy2+6dy“

a general expression - which resembles Leibniz' formula for the nth power of
a sum - can provide d'TPE but only the four terms given above are needed at
present.

(1) dTPE=0, therefore the Total Potential Energy is stationary in the
original configuration and may be minimum in it,

(ii) There would definitely be a minimum if d2TPE>Q for any choice of
dx,dy but it is clear from (5.5) that d®TPE=0 for any change of cénf%guration
with QX=0; Subject to the above condition the analysis has to continue.
Incidentally, notice that the displacements {0 dy}T = that must be considered
from now on - are the same as those that would be provided by the matrix
method of Chapter ¥; in fact the two calculations are equivalent., Also notice
that a kinematically indeterminate asseﬁbly with m mechanisms is bound to
have d®TPE=0 along m paths starting from its original configuration.

(1ii) The third and fourth order differentials have to be examined: the

necessary condition for a minimum is that d*TPE=0; which is satisfied.
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(iv) As in (ii) the condition d*TPE>0 is sufficlent for a minimum. Is
6dy*-Udx2dy?>0? Certainly yes, since dx2=0.

The linkage of Fig. 5.4 is therefore an infinitesimal mechanism, of order
one because the above analysis only went up to second-order elongations,

The first comment on the calculation just performed is that, of course,
the product-force calculation of Chapter 4 would have been perfectly
adequate for the structure 1n hand; but any more interesting mechanism of
order, say, two would also require the examination of d°TPE and d°TPE. This
could be rather an achievement if the framework has more than one node and
two members! This leads to a second remark which will appear trivial to the
reader expert in differential calculus but is stated here as a warning
against possible misunderstandings: the condition dx?=0 obtainéd in {(ii) does
not have any implications on the higher-order increments of x. This will be
emphasized in the next section; here it suffices to say that the méthod
described above requires the computation of a very large number of
derivatives of TPE, because only few of them can be recognized a priocri as

giving no contribution to the differential of a particular order.

5.1.2 Analysis of TPE along suitable paths

The impracticality of considering total differentials, which derives from the
rapidly increasing number of derivatives one has to compute to perform
higher-order analyses, 1s resolved by the present simplified method of attack
in which variations of TPE will now be considered only along one direction.
The crucial point to grasp is that the initial analysis of dTPE and d*TPE does
provide some information on the equation of the path along which the nodes of
the framework move during an inextensional displacement, although it may not
coincide with the straight 'line' which has direction cosines proportional to
the first-order compeonents of the infiniteéimal mechanism. Thus the third-
and fourth-order differentials required for the classification of Fig. 5.4
cannot be limited to the y direction. More'precisely, one has to consider all
the paths which are tangent to the computed mechanism, or indeed to the path
computed in a lower-order analysis, if the same idea is to be employed for
differentials of ahbitrary order. Among all of. these paths, one has to

consider the one for which the change of TPE is minimum. See Fig. 5.5.
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S,
®

1 _ 1
|
Flg. 5.4 Plane linkage with en=b=2>r,=1 studied in Sections 5.1.1 and
5.1.2.
ey
-.\\\
--.\:\\\
W\
\

Fig. 5.5 . Various node paths tangent to the infinitesimal mechanism
—indicated by.a solid arrow= of the assembly shown in Fig. 5.4,
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The mechanics of the procedure will be explained—by repeating the
analysis for the linkage of Fig. 5.4. An independent parameter A can be taken
to denote the nodal component of displacement in the ¥y direction; on the

assumption that only paths with a polynomial expression need to be considered

here, the most general equation for a path is:

n -
x=) aiAl, y=A
i=1

where the n constants a; are all unspecified at the beginning. Only the first
term of the summation is required for d®TPE and d“*TPE, giving a quadratic

path:
x=a,A%, y=i (5.6)

Substitute {5.6) into (5.3) to cbtain:

e,2/1,=2+(1+2a, )A2+a,21" =2/ 1 +(1+2a, )\ *+a,*\"
e,2/1,=2+(1-2a,)A%+a, %" -2v/1+(1-2a, YAZ+a, %At

which define TPE(X)=(e,2/1,+e,2/1,)/2. The list of derivatives provided in

Table 5.2 enables one to obtain the following:

(TPE), _g=(2-2+2-2)/2=0

(dTPE/dA), o0

(dzTPE/dAz)A=0=[2(1+2a2)-2(1+2a2)+2(1—232)“2(i*2a2)]/2=0

(d*TPE/dA®) , .q=0 o

(d"TPE/dA")A=0={ 24a,2-[24a,%~1.5(2+1a, y2]+2la,2-[20a,%~1.5(2-4a,)* 1} /2=
=6+24a,2

therefore dTPE=d?TPE=d*TPE=0 and everything said in Section 5.1.1 1s still
valid. This leads to the analysis of d*TPE=(6+204a,2)d\", the minimum value of
which is 6; hence TPE is minimum in the initial configuration and the assembly

is confirmed to be a mechanism of first order.
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1(EHE), =0

(£ HE),

CEMAE), g

(1Y i e-15(em)2/83/2))

(eV//e-senemye3/2)
(fVi/Vf*5[1.5f"fiv—(f"')2]/f3/2+11.25(f")3/f5/2)k=0

Oy N = owWwom

Table 5.2 The derivatives of 2/f(1), with f differentiable six
times and f£'(0)=0,

The above technique, which was Tfirst introduced by Thompson &
Hunt (1973), displays its rfull potential when applied to the study of the
linkages of Figs 5.1b and 5.2a. Starting from the framework of Fig. 5.1b, the

elongations in (5.3) are replaced by:

€2/ 1, =[x, 2+(y,+2)2+41/2-2/x, 24 (y.72) 2
622/12=[(—x1+x2+2)2+,(y1—y2)2+14]/2—~2/(—x1+x2+2)2+(y1—y2)2
e32/13=[(—x1+x3+2)2+(y,—y3+1)2+5]//§*2/(—x1+x3+2)2+(y1“y3+1)2
eqz/lu=(x2—x3)2+(y27y3+1)2+1—2J(x2—x3)2+(yz‘ya+1)2 (5.7)
e52/15=[(xz-ll)2+(y.‘,_'+2)2+20]//§5—2/(x,_-ll)2+(y2+2)2

€%/ Le=L(x3=1)2+(y,+1) 2421 /V2=2/ T, = 1) 2+ (3,71 )2

For the linkage of Fig. 5.2a the only change is that the bottom line of (5.7)
is replaced by:

e62/15=[(x3—16)2+(y3+16)2+512]/16/5--2/(x3"16)2+(y3+16)2

The 'first-order! analysis could be now repeated by solving the system of
equations d2TPE=0 but for the sake of brevity the infinitesimal mechanism
will not be recomputed here. Denote, as above, by an independent parameter A
the vertical component of displacement of node 3; a 'straight‘.displaoement
tangent to the infinitesimal mechanism hasrx,=x2=.5k, ¥:1=0, ¥,=X,=y,=A. And the

path equation of the lowest order that one must consider is now:
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X =.5h+a, A% ¥,= azA®
Xp=.5A+aAE o= Ava,)? (5.8) ~

Xa= A+agh? Ya= A

Substitution of (5.8) into (5.7) provides the expressions for e;*/1; in the
six bars of the framework, from which TPE()) is obtained. The values of TPE
and of its differentials up to the fourth order, obtained by using the

derivatives in Table 5.2, are

TPE), o=dTPE), _o=d*TPE), =d’TPE), =0

d”TPE)l=0=k[13.7243312+9.u31ia22+10.8622a32+16.7155aq2+11.3812(6.0779)a52
-5.T2H3ala2—16a1a3*11.HH87a1a5+5.72H3a2a5-2.862233a4+
“7‘577731+2.7889a2+3.1056a3+u.4ﬂ72ah"7.7360(+3.5335)a5+
+7.0670(1.4115)]

where the coefficients in brackets refer to the structure of Fig. 5.2a and k
denotes a positive constant. Of all the displacement paths (5.8), the one
which minimizes d*TPE has to be chosen; this is done by differentiating it
with respect to a;,3p5.ee085s equating each derivative to zero and solving a
linear system of five equations. At this stage it is also necessary to verify
that the determinant of the system and its top-left entry are >0 (Fiorenza &
Greco, 1978). These minimizations have been performed in both cases, and the
pesults are shown in Table 5.3. It can pe seen that the linkage of Fig. 5.1b
has d*TPE>Q and is therefore a mechanism of order one. All that can be said

about the linkage of Fig. 5.2a is that it is a mechanism of order two, at

least. A higher-order analysis of the second linkage requires a more complete

path eguation than just (5.8}, subject to the conditions listed in Table 5.3:

%,=.5h+. 343822 +D,\°
y,= —.0625)12+b,A*
xz=.5A+.o938A=+b3A3
Y= A-.1250)2+b,)°
Xs= A+.0625)%+Dg)°

(5.9}

¥Ya= A

j22
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Linkage of Fig. 5.1b a,;= .3109
a,=-.0583
as= .0692 > d*TPE=5,4822k>0

a,=-.1271
ag= .0158

Linkage of Fig. 5.2a a,= .3438
a,=-.0625
a,= .0938 » d*TPE=0

a,==.1250
ag= .0625

Table 5.3 Path conatants that minimize d*TPE,

The path equation is substituted once more into (5.7} and the derivatives of

TPE up to the sixth order are computed to obtain:

TPE), .g=dTPE), g=...=d°TPE), _o=0

d°TPE) , .=k[306.88b,%+210.88b,*+242.88b,+373.77b,*+135.9057b,*
-128.b,b,-357.77b; b,~256b, bg+128b,bs—64b,b,+
+21,18b,-9.25b,-8,68b;-12,43b,-10,0618b,+1.8038]

This is always positive, as shown by the results of the minimization of d®TPE
shown in Table 5,4. In conclusion the linkage is indeed a mechanism of order
two as anticipated at the beginning of the section., A similar analysis would
confirm that the linkage shown in Fig. 5.2b 18 an infinitesimal mechanism, of
crder three, '

More generally, 1t would be straightforward to implement the above
procedure in a computer program, one application of which would be in the
field of infinitesismal mechanisms of infinite order/finite mechanisms

- several examples of which have been given in Section U.7.

~ -
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by==,0411
by= .0116
b,==.0103 S d*TPE=1.3k>0
by= .0157
bg==.00T1

Table 5.4 Path constants which minimize d®*TPE for the linkage of
Fig 5.2a.

5.2 Formfinding of tensegrity systems

Various tensegrities have been encountered sco far but, apart from some
remarks on the geometry of the "Simplex" in Sectlion 2,4, the computation of
their nodal coordinates has not yet been discussed in any depth.

Start from an assembly of pin~jointed bars, of which the nodal
coordinates and bar connectivity are assumed té be known. The present aim is
not to use the assembly in the given configuration, but rather to elongate one
of its bars (or more than one bar, maintaining prescribed length ratios)
until a configuration is reached in which a state of selfstress can be
sustained., At this stage any further\elongation would induce, in principle at
least, the computed state of selfstress. (In practice the geometry-change
effects due to the finite rigidity of the members have also to be considered).
Most tensegrity systems are physically built in this way: turnbuckles are
inserted into the bars to be lengthened (or In the wires to be shortened) and
a prescribed number of turns in each of them produces the required shape and
level of pretension.

How does one evaluate the 'exact' geometry of a.tensegrity, at the point
where prestress hecomes possible?

Various relétionships and numerical tables are provided by Kenner {1976),
who uses only simple mathematics and ingenious arguments of symmetry to
compute the nodal coordinates of some tensegrity systems. Several numerical
methods have been put forward in the context of cable—net formfinding, one of
which has met with particular success in recent years. This is the Dynamic
Relaxation method élready referred to in Section E.ﬁ. This is a 'vector'
method in which the process of converging towards a particular configuration,

in equilibrium with or without external 1loads, is transformed into a
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fictitious dynamical problem and integrated by means of a finite-difference
procedure. Some artificial damping is introduced in order to obtain
convergence. Motro (1983, 1984) has made use of this technique to obtain the
prestressable configuration of the "Simplex".

Here a purely 'geometrical' formulation is proposed which reduces the
formfinding of any tensegrity to the solution of a standard problem of
Non-Linear Programming, for which library subroutines are available.

The "Simplex" is obtained by starting from a triangular prism all the
edges of which have unit length, replacing the edges by pin-jointed bars and
adding three diagonals, as in Fig. 2.17a, to brace the square faces of the
prism. Such a pruss has n=6, b=12 and therefore it satisfies Maxwell's rule; it
has m=s=0 as do all closed triangulated surfaces which are convex {Cauchy,
1813). Clearly, after Section 2.1, an ill-conditioned configuration with s=m=1
can be obtained by elongating simultaneously the three diagonals until they
reach a maximum length; and this 1is the configuration of interest. Figure 5.6
shows a plan view of the top and bottom bases of the prism: it is assumed that
the bottom triangle does not move when the diagonals elbngate. See Fig, 2.17.
The simultaneous elongation of the diagonals causes the top triangle to
rotate about the z-axis and translate in the vertical direction; therefore
the axis through the centres of area of the two triangles is an axis of
three-fold symmetry for all successive configurations.‘ The translation
associated with a rotation through an angle a of the top triangle can be
evaluated by imposing that the distance between two corresponding vertices of

the triangles has to remain equal to one:
112=252=362=(5ina/281n60°)2+[ (1-cosa) /2sin60°]2 +72=1

this gives the third coordinate of nodes 14,5,6, for arbitrary a:

z=/1-(1-cosa)/2s1in?60° : (5.10)

The corresponding length of a diagonal is

152=/(.5+s1na/251n60°)2+(cosa/231n60°+.5Lan30°) 2~ (1-cosa) /231n60°+1 (5.11)
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Fig. 5.6

1=(0.5, -(tg30°)/2, 0)
2={0, 1/(2sinb0®), 0)
3=(~0.5,~(tg30°)/2, 0)
5=(-sina/(28inb0°), cosa/(2sin60°), z)

b) bar no, node no.

1

v oo loum slwno =
wr =onwm o N

node no,
I
5 upright members
6
5
6 top triangle
b
5
6 diagonal members
y

a) Plan view of top and bottom triangles of the "Simplex", alcong
the z-axlis, The top ¢trilangle has been rotated through an
arbitrary angle a. b) Bar numbering system. (Not all the bars are
shown in the figure). Note that the sides of the bottom triangle
need not be part of the structure.
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and the value of a for which the diagonal length is maximum corresponds to a
stationary value of the expression under the root of (5.11). This value is
given by the solution of the equation tana=1//3 which has only one solution

in [0°,180°], given by w=30°. The corresponding nodal coordinates of the

"Simplex" are shown in Table 5.5; and the length of the diagonals is 1.4679,

X ¥ z
1) 1] .5000 -.2887 .0000
2 | .0000 L5774 .0000
3| ~.5000 ~.2887 .0000
Y 5774 L0000 .9543
51 -.2887  .5000 .9543
6 [ -.2887 -.5000 .9543
{1) 4| .5773  .00006 .9543
5| -.2887  .5000 .9543
6 | -.2887 -.5000 .9543
1ii) 4| 5770  .0240 .9471
51 -.3093 4877 9471
6| —2673 5117 9471

Table 5.5 Nodal coordinates of "Simplex", in the ecartesian
system of axes shown in Fig. 5.6: 1) solution in closed form, ii)
numerical solution using a NAG subroutine, 1ii) results from

Motro (1983).7

The above caleulation has taken full advantage of the three-fold symmetry of
the problem being tackled, .which enables one to obtain the configurations of
the prism, for any chosen length of the diagonal members, as function of the
one parameter o. In this example the length of the diagonal bars could be
maximized by means of direct differentiation., A similar approach would be
clearly desirable Iin all circumstances, but it is not practical in most
'realistic' cases. If no Symmetries can be spotted at the onset, the above

formulation becomes practically impossible: the main diff‘riculty lies in the

~ large number of variables.
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The following reformulation of the tsimplex" formfinding will introduce
an equivalent but more general way of proceeding, which may be extended to
more complicated assemblies.

Following the connectivity scheme displayed in Fig. 5.6, the

relaticnships
1,=1,%...=1=1; L,=lg=1y=Max (5.12)

entirely define the problem. Here the positions of nodes 1,2,3 are being
considered fixed in space, therefore only the nodal coordinates of 4,5,6 have
to be determined. It takes little effort to transform the first set of

equations (5.12) into six quadratic equations:
1,2=1,2%=,,.=14%=1 (5.13)

Once the function F=-(1,)? has been defined, the remaining conditions can be

written in the form:

F=Minimum
1,2-1,2=0 (5.14)
1,2—192=0

The relationships (5.13) and (5.14) define the following problem of

Non-Linear Programming, see Luenberger (1984):

"Minimize F(x)=-[(xs+.5)2+(ys+.2887)%+z%]

subject to: . (X, +.5)2+(y,+.2887)%+z,%=1
X2+ (ysm . 5TTU) 2 +252=1 (5.15)
(Xg*.5)2+(y+.2887)%+z %=1
(Xs=%, ) 2H(¥5 ¥ ) 2+ (25~27, ) =1
(xg=Xg )2+ (yemVs) 2+ (27250 %=1
(Xy=%6 )2 H{(y, ~¥e )2+ (24 =26 ) =1
xsz+y52+zsz—x62—y52—z6f—x5+;577Uy5+1.T5H8y6=0

X, 2V 2" Tyt K2+ Y 52 25 Ky = Xs ™  STTH(Y, 7y} =0 "
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This can be solved by means of the NAG (1984) subroutine EQOY4VDF; the results
obtained are shown in Table 5.5, The corresponding length of the diagonal
members is 1.468. For the sake of comparison, the table also shows the results
of the formfinding performed by Motro,

This approach has also been successful In generating the nodal
coordinates of the tensegrity truncated tetrahedron analysed in Section 1.7,
see Flg. 4.25 and Table 5.6. In this case the objective function tec be
minimized, equal to the negative of the length of bar no. 24, has to satisfy 23
constraint equations, In this application a Fortran subroutine which prepared
the data input required by the minimization routine replaced the explicit
formulation in (5.15); the triangle with vertices in 10, 11 and 12 was
prevented from moving by defining equal top and bottom bounds of the interval
in which they vary. The final length of bar no. 24 is 2,2507, very elose to 2.25
which is the value quoted by Calladine (1978).

In conclusion, a novel and reliable way of obtaining the prestressable
configuration of any tensegrity structure has been presented. An advantage of
the present system is that it 1s entirely general, as it does not rely on the

cholce of a particular system of coordinates,
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Joint no, X y z

1 .95602 | —-.08948 | 1.67408
2 59356 | .83643 | 1.567T1
3 -.40013 87334 | 1.67359
Il -1.02083 .09648 | 1.56773
5 -.55609 | =.78256 | 1.67411
6 42706 | -.93418 | 1.56807
T 1.07667 39845 .80957
8 -.88340 .73362 .80934
9 -.19355 [=1.13120 .80981
10 50000 .28868 .00000
i -.50000 .28868 00000
t2 00000 | -.57735 00000
Table 5.6 Joint coordinates

and

truncated tetrahedron of Fig. 4.25,

bar no. joint no.| joint no,
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 1
T 1 7
8 2 7
9 3 8
10 ! 8
11 5 9
12 6 9
13 T 10
14 8 11
15 9 12
16 10 11
17 11 12
18 12 10
19 1 11
20 2 9
21 3 12
22 Y 7
23 5 10
24 6 8

connectivity of tensegrity
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6. Response to loads

Cable structures tend to exhibit a non-linear response to most 'nmormal' load
conditions. This is visually confirmed by the plots of load vs, displacement
and tension from any of the tests to be described in Chapter 7. In the past
this has led to their being analysed by means of numerical methods in which
all configuration changes are accounted for within an iterative procedure,
Yet the key to the understanding of the behaviour of this structural type 1s
in the analysis of its linear response f¢ a set of rather special load
conditions, which were introduced in a different context in Chapter U,
Consequently the main objective of this chapter 1s the development of a novel
technique for the 'linear' analysis of cables and cable nets; and the
limitations of the techqique are then examined and removed. In fact the
results of this chapter are not restricted to cable systems, and they will be
described in relation to arbitrary kinematically indeterminate assemblles.
The layout of the chaptgr is as follows: Section 6.1 describes how to use
the four fundamental §ub3paces of the equilibrium matrix, Introduced in
Chapter 4, in order to perform linear-elastic or plastic computations for
'ordinary' rigid assemblies under arbitrary load conditicons. Building on these
results, Section 6,2 tackles the analysis of an arbitrary pin-jointed
assembly; in the case of kinematically determinate assemblies the procedure
described coincides with the well-known force method. This analysis is
completed in Section 6.3; Section 6.4 investigates the possible sources of
non-linear effects and introduces the required corrections. Finally, the
validity of the method is tested and verified, mostly in Section 6.5, by
comparing its results with data from experiments and calculations available

in the literature.

6.1 Linear—elastic and plastic analyses of rigid assemblies

The study of the general assembly introduced in Section 4.1, consisting of n
nodal points connected by b bars to eagh other and by ¢ constraints to a rigid
foundation, will be continued iIn this section. It is aésumed that the
geometrical analysis leading to the.four subspaces related to the equilibrium
matrix, summarized in Table 4.1, has been performed already; so that .their

dimensions rp, 8 and m are known, and a basis for each subspace is also
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avallable, This section shows what to do with them, in order to solve

'straightforward' structural problems. Therefore only rigid assemblies with

M=m=0 will be analysed, and soc each result has a well known counterpart in the
textbook descriptions; these analogies will be polnted out as the analysis

develops.

6.1.1 Linear~elastic analyses
Assume that a linear—elastic relationship exists between the elongation ey of

bar i of the framework and the axial tension ti:

ir Ei are the length, cross—sectional area and Young's modulus,

respectively, of bar i. The ratio (l/AE)i, which 1s the axial flexibility of

where li’ A

bar 1, will be denoted by the symbol f;. Thus the b-dimensional diagonal
matrix [F], with f; as its entry of position (i,i), relates the vectors {e} and

{t} Introduced in Sectién U.1:

{e}=[FI{t} (6.2)

Obviously, the inverse relationship is {t}=[F]_}{e} where [F]_1 is the
diagonal matrix of entries 1/fi.

Statically determinate assemblies (b=3n-c=r,, M=0, s=0) have both bar and

joint spaces entirely filled by the " row space and column space of the
equilibrium matrix, respectively; hence all load <conditions can be
gquilibrated and there is a one-tco-one correspcondence between sets of bar
tensions {t} and applied loads ({f}. Furthermore, any prescribed nodal
displacement requires certain bar elongations to occur, in other words it is
'extensional’, and there 1s only one vector (e} correspending to 1t. All sets
of bar elongations are compatible. As all the columns of [A] are independent,
they will obviously provide a basls for the column space (see Section 14,2)
while Lhe rows Qf an rA—dimensional identity matrix furnish a basis for the
row space, The.correspondence between vectors of the roﬁ space and column

space 1s illustrated in Fig, 6.1. The complete structural 'analysis .of a
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Row space of [A] g

Column space of [A]

Displ.

[A]

[A] "~

Fig, 6.1

Tensions

—

Nodal forces

Column 1 of [A]

is equal to the

nodal forces in

equilibrium with
a tension of 1,

in bar no. 1,

The correspondence between vectors of the row and column Spaces
of the equilibrium matrix [Al, for a statically and kinematically
determinate framework., [4] transforms each row vector of the row
Space into a column vector of the column space; but the
compatibility matrix [A]T achieves a one-to-one correspondence
between displacement and elongation vectors only if the columns
of [A] are replaced by ([A1"")T, in the column space.
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statically and kinematically determinate framework is now easiljﬂdone by use
of the two subspaces of Fig. 6.1: any/assigned load {f} has to be decomposed
into ry components, each of which corresponds to a change of tension in only
cne of the bars. This operation requires the‘computation of the coefflicients

a1,a2“..arA from:
[Al{a}={£} ' (6.3)

which has a unique solution. Obviously {a}={t}, and solving (6.3) is precisely
the same as computing the bar tensions by means of the equilibrium equations
of the assembly, see McGuire & Gallagher (1979). Once the tensions are known,
the bar elongations are obtained from (6.2). As noted in the gaption to
Fig. 6.1, the nodal displacement due to a unit elongation of bar i is row
number 1 of [A]d1; the nodal displacement {d} due to the elongation
{e}=(F1{t} will be:

fay=((a1™HTer1(e} (6.4)

Similarly, the displacements prodﬁced by a given set of elongations (due to
thermal distortions, lack of fit,..) {e,} are just given by {d}T=([A]d1)T{eO}.
These results are not unexpected if one recalls that [A]T is the
compatibility matrix of the assembly.

Redundant assemblies (b>3n~c=rA,M=O,s=b—rA) The left-nullspace is empty

as in tﬂe statically determinate case, and therefore any load condition [£}
can be equilibrated'in the initiél configuration; but the row space does not
flll the bar space and - although it is of course possible to deflne a
one-to-one correspondence between the vectors {t'} in the row space of [A]
and any applied load - the elongations corresponding to (t'} will not, in
general, satisfy the conditions of geometrical compatibllity. This is because
{t'} is orthogonal to the nullspace but the elongations due to it, possibly
added to a set of initial elongations {ep}, may not be. As shown in
Section 4,1.2, the nullspace of the equilibrium matrix contains all the
possible incompatible elongations; therefore the elongations due to {t'} in

general have an incbmpatible component. This point will be clarified lateér on,
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and the orthogonality condition mentioned above will be used to obtain the
set of compatibility equations; but some essential details regarding the
three non—empty subspaces of the equilibrium matrix need to be discussed
first.

A basis for the column space of [A] is formed by the r, independent
columns of the equilibrium matrix; for the sake of convenience the {3n-c) by
ry matrix containing these columns will be indicated as [A,]. s independent
states of selfstress, assembled in the b by s matrix [SS], are a basis for the
nullspace. A simple way to obtain a basis of the row space can be derived from
the statically determinate case (Fig. 6.1), with the difference that now the
rows of the rA~dimensional identity matrix have to be augmented by b-r, extra
columns which make the resulting row vectors orthogonal to the nullspace
(this i{s an application of Seetion 4.2). '

Although the bases provided above are all correct, 1n the sense that they
do span the three subspaces, their vectors have not been chosen with ‘enough
care that [A], say, associates each base vector of the row space with a
corresponding base vector of the column space.

The following two alternative bases of the column space, though, satisfy
this need in different ways. First consider the coclumn vectors the entries of
which are the ncdal forces in equilibrium with the systems of bar tensions
considered for the row space and assemble them in the matrix [4,]; the
equilibrium matrix [A] now transforms one basis into the other in a way
similar to that shown in Fig. 6.1, But the compatibility matrix does not
operate the Inverse transformation, See Fig. 6.2a.

Now consider the rp-dimensional matrix [E]T of Sectlon 4.2 as an
alternative basis for the coclumn space: the compatibility matrix [A]T
transforms the columns of [I1T into the rows of the row space of [Al.
Obviously there is no such correspondence in terms of equilibrium. See
Figs 6.2b and 6.3.

As noted before, any load can be equilibrated by the assembly; the first
stage in the determination of the bar tensions due to the load {f} is to
evaluate a vector {t'? which belongs to the row space of [A] and is in
equilibrium with {f}. This problem has been already encountered when dealing
with statically determinate assemblies: one needs to solve the system of r,

equations
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Column space
of |A)

Row space of [A]

Compatible

Nodal forces

Column 1 of |

ig equal to the
nodal forces In
equilibrium with
the first of the
tension vectors.

Nullspace of [A)

S —

e

S gtates of selfstress,
incompatible elong.

Fig, 6.2a The correspondence between vectors of the row and column spaces

of the equilibrium matrix [A], for a statically indeterminate but
kinematically determinate assembly.
The basis of the column space chosen here is such that [A]
transforms each row of the row space into a column vector of the
column space; and all of the vectors of the nullspace into the
origin, of course. But [A]T does not achieve the same cne-to-one
correspondence,

Column sﬁace of [Al

Column 1 of EE?T contains
the nodal displ. which cause
the first elong. vector.

Row space of [(A]

ey

Compatible
elong.

(A}

Nullgpace of [A]
incompatible elong.

Fig. 6.2b Cf. Fig. 6.2a.
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@
;l,, |

| 1 -~

A1 = | O -IANZ =1
Al [1 V2 0

The transformation described in Section 4.2 yields:

[3&]: 1 0 -1 1 1
0 1 V2 | /20

Hence rA=2, m=2-2=0 and s=3-2=1. Substituting numerical values into the
scheme sheown in Fig. 6.2a one cbtaina:

Row space Column space
1 0
A
0 1 [4,]
Nullspace

Substitute into Fig. 6.2b to obtain:

0 1
1
Fig. 6.3 ~ Example of statically Indeterminate assembly. All the points

discussed in Section 6,1.1 can be verified by inspection.
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(4, {a}={F} (6.5)
And then the desired tension vector is
{£'}=81"{a} (6.6)

in other words the ith vector of the standard basis of the row space, which
coincides with row 1 of [E], has to be multiplied by the corresponding
coefficient o; and the contributions from all the vectors of the basis have
to be added up. To use a term well known in the theory of framed structures
(Heyman, 1974), the computation of {t'} is equivalent to sketching a 'free’
bending moment diagram in the analysis of a continuous beam. The vector {t']
obtained from (6.6) is orthogonal to the nullspace; the bar elongations are
now [F1{t'}+{e,}, with {e,} denoting a set of initially imposed elongations.
These elongations are compatible only if they too are orthogonal to the
nullspace; otherwise a set of self-equilibrated tensions has to be
superimposed to the {nitial solution. The wmost general state of
self-equilibrated tensions is given by [S81{x}, in which x; 1is the
coefficient that multiplies the state of selfstress number i, All xi's would

vanish if {t'} happened to satisfy the compatibility of deformation.

The bar tensicns are in total:

{t}={tr}+[SS]1{x} (6.7)
and the total elongations are:

{e}={e, }+[FI1({t"}+(SsS1{x}) (6.8)
The s-dimensional vector {x} is unknown, therefore one needs to write down s
independent equations of compatibility; precisely s equations of this type
are obtained by imposing the condition that f{el}, as expressed in (6.8), is
orthogonal to the nullspace, l.e. that the dot product of {e}l by each column

vector of [S88] vanishes. In matrix form the compatibility equations are

therefore:
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(ss1T{e}={0} (6.9)

Substitute (6.8) into (6.9}, expand and take all known quantities to the

right-hand-side to obtain:
[ss1TLrIC88T {x}=-[881T{e,3-C881TCFI {21} C(6.10)

This is a system of s linear equations in s unknowns; the matrix [SS]T[F][SS}
is not singular because the 5 rows of [SS] are independent and [F] is a
diagonal matrix (Strang, 1980). The interpretation of this result is trivial;
indeed it 1s well known in the analysis of a redundant structure by the force
method that one has to solve a system of linear equations the dimension of
which is equal to the number of redundancies. This system of equations is
precisely (6.10).

A more usual way of obtalning (6.10) is by means of virtual work: see
Pestel & Leckie (1963). In this case the proof considers s independent
syastems of 'forces' in equilibrium, each of which is merely a state of
selfstress; and only “one system of ‘displacements!, the real one. The
orthogonality argument described above and the more traditional approach
based on virtual work are entirely equivalent; this becomes apparent if one
compares the statements 6f equilibrium and compatibility made in Chapter 4,
and embodied in the four fundamental subspaces of [A], to the proof of the
virtual work equation in the explicit case of trusses (Neal, 1964),
Equivalent équations that minimize the total energy in the assembly were used
by Robinson (1966) in the development of the rank force method, which has
many points in common with the above derivation, and by Przemieniecki {1968),

Once {x} has been determined from (6.10), (6.7) and (6.8) provide the bar
tensions and elongations due to {f} (+feg}). The final step is the evaluation
of the nodal displacement vector {d}. For this purpose the elcongation vector
{e} has to be decomposed into rp components, each of which is proportional to

a vector in the basis of the row space, by solving:

(21 T{a)=(e} : (6.11)
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Thus the nodal displacement vector is {d}=[f]T{a}. In fact therﬂelongations of
the bars of the framewcrk that correspond to linearly independent columns of
[A], denoted by * in Fig, U.5a, correspond to rows of [ﬁ]T which only contain
one non-vanishing entry (=1). Therefore there is no need to solve (6.11): {a}
has to contain the elongations of the independent bars, which one can extract

from {e}. In conclusion
{ay=[ 11T} (6.12)

where {e*} contains the elongations of the independent bars. This completes
the analysis.

In practice some inconsequential simplifications can be introduced: [4,]
can be replaced by [A,] in (6.5), and (a1t by [I] in (6.6). Then {t,} is

directly computed from
(A d{t'}=(f} , (6.13)

and 1s no longer orthogonal to the nullspace of [Al, but this does not matter
too much.

In conclusion, the structural analysis of a statically indeterminate
truss requires the solution of (6.13) and (6.10), and the evaluation of (6.7),
(6.8) and (6.12). These results will be useful for the analysis of

kinematically indeterminate assemblies, in the next section.

6.1.2 Plastic analyses

The fundamental subspacesa of the equilibrium matrix [A] can be utilized in
order to compute the multiplier i, of all applied loads (proportional
loading), under which collapse of a redundant structure occurs according to
simple plastic theory (Baker & Heyman, 1969). Therefore the load vector {f} in
this section will merely denote the 'shape' of the applied loading, A{f} being
its ac¢tual value. Strictly speaking, all conclusions will be only valid for
pin-jointed asseinblies but it would be straightforward to extend the present

treatment to framed structures and continua.
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For the purposes of this section, it is assumed that every bar of the
assembly is made of rigid-perfectly plastic material, see Fig. 6.4; this is
equivalent, see Baldacci, Ceradinl & Giangreco (1974), to considering a
slightly more realistic elastic-perfectly-plastic constitutive relationship
and also postulating that the elastic displacements are small enough not to
influence the bar tensions. Furthermore each bar is assumed to have equal
strength in tension or compression, and the possibility that any bar in
ooinpression may buckle is excluded,

The upper—- and lower—bound theorems are well known in the theory of
plastic design of structures (Neal, 1964, Baker & Heyman, 1969): according to
the lower-bound theorem any multiplier A' such that the applied load A'{f} can
be in equilibrium with a set of tensions which do not violate the yield
condition is always less than, or at most equal to, the true load factor AC.
Also, according to the upper-bound theorem, for any hypothetical mechanism of
collapse, the multiplier A" - obtained by equating the work done by the load
A'{f} during collapse, to the plastic energy dissipated - is always greater
than, or at most equal to, AC.

For an assembly having s=0 the evaluation of Ao is trivial.

To produce lower bound estimates of Ac in the more general case s>0, one
has to satisfy equilibrium and yield conditions at the same time: Equilibr‘iumr
provides, for any assigned load (shape) {f}, a set of tensions {t,}, solution
of (6.13), in equilibrium with it; the bar tensions A{t,} are in equilibrium
with A{f}. An arbitrary set of self-equilibrated tensions [SS]{x} can be
added to {t,} without altering the equilibrium requirements, as in (6.7). In
order to introduce the Yield condition in the ‘calculation, define two
b~dimensional vectors {tmin}=-{ty} and {tmax}={ty}, where {ty} 1s the vector

which contains the yield tensions for all bars of the assembly, Clearly

{tni}sltlslt (6.14)

min max}
The inequalities (6.14) determine an admissible set within the space of bar
tensions, and any multiplier A is a lower bound for )‘c if a linear combination
[8S1{x} can be found such that the vector A{t,}+[SS}{x} lies in the

'admissible' region of the bar space. See Fig. 6.5,
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Fig, 6.4

Fig, 6.5

[ -

<€

Constitutive relationship assumed in Section 6.1.2 for bar i of
the assembly.

;@ L o &
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BAR SPACE t,
' Nullspace
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Rowspace

Two-dimensional bar space of the plane assembly shown in (a).
Bars 1 and 2 have different yield tensionas: t1 =t, and t, =1.5ty.
Plainly there is one state of selfstress, in which the bara carry
equal tensions. The row space is perpendicular to the nullspace,
Two different systems of tensions in equilibrium with the unit
load applied are {t'}1, obtained from (6.13), and {t'}g, obtained
from (6.5). The maximum value of )} (=i,) has been found
graphically. Obviously both initial solutions yleld the same A ..
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The maximum lower bound can be found by solving the following problem of

" Linear Programming: "Maximize A subject to the condition

{t .} s[tv|ssJ[§} <{t (6.15)

min max} "
The adjoint matrix in (6.15) has b rows and s+1 columns. It is easy to sclve
the problem defined above by using a library routine, see Luenberger (1984).
It is important to notice that this approach decouples the equilibrium
problem from the yleld condition. Thus (6.15) only deals with the yield
condition, which reduces substantially one of the dimensions of the matrix:
the number of columns is reduced from b, as in (Livesley, 1973), to s+1. An
equivalent formulation has been described concisely by Besseling (1978).
Upper bound calculations can be also made by use of the fundamental
subspaces, and for this purpose one of the formulaticns of Section 6.1.1 will
be particularly useful: this is the one in which a one-to—one correspondence
was established between the basis of the row space and the columns of [i]T,
which contain the nodal displacements due to the elongations in the row
apace. Each of these displacement vectors defines an independent mechanism of
collapse for the rigid-plastic assembly being investigated; thus a total of
PA=3n—c independent mechanisms is cobtained. All the mechanisﬁs of collapse,
among which is the true one, can be expressed as a linear combination of the
above mechanisms, and hence any mechanism has the form [i]T{y}; here the ry
dimensional vector {y} allows one to choose any particular mechanism of
¢ollapse by a suitable choice of its components. The corresponding plastic
bar elongations will be [E]T{y}. In order to compute the locad factor
assoclated with a chosen mechanism of collapse, the external work done by the
applied load {y}T[E]A{f} has to be equated to the plastic energy dissipated
ABS({y}T[ﬁ]){ty} (the notation ABS( } here denotes the vector with entries
equal to the the absolute value of the entries of the vector inside the
brackets). If the external work associated with a particular mechanism does

not vanish, the corresponding load factor is provided_by the ratio:

l=(ABS({y}TEE]){tY})/({y}T[f]{f}) : (6.16)
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Formula (6.16) defines a scalar function of the vector {y}. The collapse
multiplier of the load {f} is the minimum of the'fuhction A=A(Y“y2”.qyrA)
defined in (6.16).

The above approach 1is suitable for both statically determinate and
Indeterminate assemblies, and promises to be a substantial improvement of the
more usual upper bound formulations suggested in, e.g., Besseling (1978) which
lead to a problem of Linear Programming which is the dual to (6.15). Therefore
it may contribute to the development of more efficient algorithms for the
limit analysis of structures; it is somewhat surprising to read in Livesley
{1975) that "the caleulation of the collapse load factor ... takes about five
times as long as an elastic analysis of the same structure". It may also be
peossible to explain some unexpected difficulties found by Heyman (1975) in
the evaluation of the collapse load of simple space frames, Another area for
further investigation is how to utilize best the fundamental subspaces of [A]
for elasto-plastic calculations; a recent paper by Domaszewskl &

Borkowski (1984) may be of some guldance in this task.

6.2 Linear response of kinematically indeterminate frameworks

A calculation of the product—-forces of a pin-jeinted assembly with s>0, m>0
was first performed in Section 4.5, The consequent assemblage and analysis of
[A'] led to the distinction between infinitesimal mechanisms of firat order
and mechanisms of higher order, An equivalent approach can also be introduced
for assemblies with s=0, m>0: formulae like (4,20} can define the

product-forces due to an initially applied set of loads and an identical

matrix [A'] can be assembled. In this section the linear behaviour of an
assembly with arbitrary s and m will be analysed in general ferms; this is
possible because the most significant differences of behaviour between a
kinematically indeterminate assembly which 1s statically determinate and a
'aimilar' assemblf which is statically and kinematically indeterminate are in
the non-linear range, leaving aside of course the need for extra equations of
compatibility in the latter case. In particular, it will turn out that the
linear—elastic analyses of Section 6.1.1 can be derived as special cases from
it. |

In the present section it will be assumed that the displacements due to

the applied loads are rather 'amall', in a sense that will be more clearly
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defined in Section 6.4, The initial computation of the linear response of an
assembly to any load condition, though, is the first and essential component
of the present method; its validity will be tested and extended when
necessary in Section 6.4, For the sake of clarity, it will be assumed that
dimensions and bases of the four fundamental subspaces related to the
equilibrium-matrix [A] are known a priori, although in practice several of
the calculations described here find thelr most natural location within the
eliminationlprocedure of Section 4,2,

Consider a three-dimensicnal assembly of n spherical, frictionless hinges
connected to each other by b bars, and to an external foundation by ¢
constraints. The vectors [t}, {e}, [f}, {d} have already been Introduced in
Section 4.1 to denote the b-dimensional vectors of bar tensions and
elongations, and the (3n-c)~dimensional vectors of nodal components of force
and displacement, respectively. In this context these vectors will be used to
denéte global guantities; therefore if an initial set of - say - tensions is
present in a particular analysis, these will be denoted by {t,} and the
subsequent increment that brings their values up to {t} will be denoted by
{8t}

For this assembly, the geometrical analysis described in Chapter 4
reveals that the rank of the equilibrium matrix is rpt therefore the assembly
is s=b-r, times redundant and has Me=m=3n-c-r, internal mechanisms {the
introduction of rb rigid-body mechanisms into the present formulation would
be possible at the only expense of more complicated symbols).

Which load systems can the assembly equilibrate in the context of a

linear analysis? All the "fitted loads", of course, can be carried by the

assembly in its initial configuration, hence all the load conditions that
belong to the column space of [A]: of a total of 3n-c¢ independent load vectors
one can think that their 'components' along the rﬁ-dimensional column space do
not excite any of the inextensional modes. Therefope these can be dealt with,
in principle, in exactly the same way as they would be in a kinematically
determinate framework (see Section 6.1.1). The components of that load onto
the m-dimensional left-nullspace are still left. A state of selfstress may

provide, as noted in Section 4.5, first-order stiffness against some or all of
the m inextensiohal modes which were the forbidden load conditions above.

This 1s not” an unusual situation: it is common practice to prestress

145




statically and kinematically indeterminate englneering structures by
imposihg an 1initial set of distortions which generates a state of
self-equilibrated tensions {t,}, e.g. cable nets. It is also standard practice
to rely on the effect of any existing tension when dealing with statically
determinate but kinematically indeterminate assemblies, e.g. cables hanging
under their own weight and loaded by live loads. This is just a variant of the
above situation, with {t,} now being the consequence of an initial loading

{fy} which 1s itself a "fitted load" for the assembly, and hence can be in

equilibrium with {t,}. As {t,} and {f,} are in equilibrium
[AT{t,}={f,} (6.173

Here [A] has 3n-c¢ rows and b columns and 3n-c>b, but there exists one (and
only one because s=0) solution to (6.17) as {f,} is "fitted". Now rewrite the
equilibrium equations of node i of the framework, see Fig. HJ,‘ for an
Infinitesimally displaced configuration assuming that the values of the bar

tensions are unchanged -as for (4.19)-:

[(Xi+xi)—(Xj+x.)]t /1 +[(xi+xi)—(xk+xk)]t /1 =f
[(Yi+yi)“(YJ+YJ)]top/lp [CY vy )=(Y +yk)]toq/1q foiy*Piy

[{Zi+Zi)—'(Zj+Zj)]top/lp+[(zi+zi)“(z +Zk)]toq q fOlZ piZ

oix+pix
(6.18)

here Xi» ¥Yi» Zysee @re the components of displacement of joints i,... according
to the 1nextensional mechanism considered. Subtract from (6.18) the

corresponding equations of (6.17) and exchange right= and left~hand-=side to

obtain:
(X% )top D *(xg- Xk)toq q
ply (yi-ytop/ 1y~ yk)toq/lq (6.19)
piz=(zi-zj)top/lp+(z )toq/lq

These formulae define a set of product-forces for any prelcaded assembly, in
the same way as (%.20) did for prestressed assemblies only. So far as the

linear analysis goes the vector of initial tensions fty}, whatever-its origin,
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is the only datum required. The product-forces define a new subspace of loads
that 'can be carried', and they may have beneficial effects on the structural
performance of the assembly. It was noted that there is usually no close
resemblance between a mechanism and the product-force vector due to it and to
the initial tensions {t,}; an important implication of this is that "fitted
locads" and product-forces have to interact when a load is applied. That is, if
one particular applied load needs to activate an inextensional mode to
benefit from the product-forces consequent to it, these product—-forces
usually have a non-vanishing component 1in the Subspace of "fitted loads';
this component has to be included in all computations. See Fig. 6.6, Also, as
the effect of any "fitted load" component is to alter the bar tensions and
hence the product-forces, [A'] will need to be updated and the calculation
repeated.

In conclusion any prestressed assembly has m product-force vectors which
may or may not carry the m forbidden loads through the geometry-changes
assoclated with thé inextensional modes, without any change of tension in the
bars. The distinction between stiff (extensional) and soft (ihextensional)
modes of a prestressed mechanism, a cable net in the specific case, was first
pointed out by Calladine (1982). Pellegrino & Calladine (1984) utilized a
minor modification of [A'l, see Fig. 4.9, to analyse the linear response of a
saddle-shaped cable net. In a more general form the same approach will be
followed here.

The matrix [A'] introduced in Chapter Y4 has the r, independent columns of
the equilibrium matrix [A], i.e. all the_"fittéd loads"™ of the assembly, as
columns 1,... rs; plainly all the columns of [A] are independent if s=0. The
remaining m columns are the product=force vectors which can-be now computed
for each one of the m mechanisms from (6.19). The resulting matrix is.square
because rb=0. The rank of [A'] rwill indicate how many independent 1load
conditions can be considered in the context of the present linear analysis,
as in Section U.5.

The main use of [A'] here is as a replacement of the standard equilibrium
matrix; while [A] is only valid in the initial configuration of the assembly,
[A'] also incorporates equilibrium conditions in all the configurations
obtainable through small, inextensional distortions from the initial

configuration. In this new function obviously only the first r, columns of
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Left-nullspace

Mechanism —

Fig. 6.6

Column space

Two-dimensional joint space of an hypothetical assembly which
has rA=1, m=1. Obviously there 1s only one fitted load; the only
product-force has been computed according to an hypothetical set
of existing pretensions, and its components are {1 2}T. The
applied load F={1 1}T has been decomposed inte lts 'fitted' and
tproduct-force' components,

Notice that loads proportlional to the product—fohce, not to the
mechanism, would be carried purely inextensionally, and hence
would not alter the bar tensions.
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[A'] have to be multiplied by the tension in the corresponding bars, which are
statically determinate and were indicated by * in Fig, 4.5a. The remaining
columns are multiplied by the magnitudes of the {(small) inextensional

displacements. In short:
(41125 =61} (6.20}

where the first r, components of the vector {6—;} represent changes of tension
in the statically determinate bars which were picked out by the elimination
procedure. The same numbers, interspersed by O0's corresponding to the
redundant bars, constitute {8t}., The remaining m components of {6—;}, TP,
are the quantities by which each inextensional mechanism has to intervene.
{6f} is the 'live' load vector.

The solution of (6.20) can be pursued using Gaussian elimination, or any
algorithm which 1s able to detect load conditions which cannot be carried if
[A'] does not have full rank.

The caleculation just described has been made for the plane assembly of
Fig. 6.7: it is easy to verify that, although the structure has one mechaniam,

{fo} 1is certainly a "fitted load" because it 1s equal to the linear

combination of the columns of [A] with coefficients 2v/71.25, 2, 2¥1.25. The

initial tensions are therefore {t,}={2/7.25 2 2/1.268}7={2.2361 2 2.2361]T. It
is also easy to verify that the components of the inextensional mechanism are
{-.51.-5 -—T.}T. The columns of the equilibrium matrix being independent, [A!]

is obtained by adjeining the product-force to it; hence (6.20) becomes:

WTs -1 o -1| (st,

0
/2725 0 0 6f Jst,l Jo
- 6.21
0 1 =125 -1 [stll o ( )
0 0 1/2/17.25 -6| Lo,/ W

the solution vector ls {% ={1.032¢ 1. 1.2040 -.0769}T, from which
{t}={3.2681 3. 3.4401} 7T,

A straightened out version of‘_ this assembly, see Fig. 6.8, was first
examined in Section 4.3. Only two.columns of [A] are independent (the Gaussian

elimination picked out columns 1 and 2) and they are the first two columns of
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[A] =

[A'] =

Fig. 6.7

(a)

{b)

Fig. 6.8

100 3 I

1/v1.25

1 0 0
1/2/1.25 0 0 (£,}=)1
0 1 -1//T.25 o
0 0 1/2/1.25 1
3=1
=3~3=0
1/Y1.25 -1 0 -1
1/2/1.25 0 0 6
0 1 -1//1.25 -1
0 0 1/2/1.25 -6

Example discussed in Section 6.2.

100 %a( 2 3£ :EL 100 _
Y

9

| _{;'100

(a) is an example of a load condition
which causes no change of bar tension, and hence ‘there 1s no need
for the extra computations that restore the geometrical

compatibility. These calculations have been done for (b} in
Section 6.2, ‘
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[A']; hence the first two entries of {ﬁg} are the tensions of bars 1, 2, The
remaining two columns of [A'] are the product—-forces, which were first
computed in Section 4.5; the level of prestress has been set at 100 (force
units) in the preseﬁt example, For the load condition shown in Fig. 6.8a (6.20)

can be written aas:

1 -1 0 o] gst,
0 0 200 -100 §t,
0 1 0 0 a, b~
0 0 =100 200‘_‘I Op

(6.22)

- o O O

The solution of this system of equations confirms that the assigned load 1s
only carried through geometry-change effects, hence the final tensions are
{t}={t,}={100 100 100}T,

Formula (6.20) relies, as noted already, on the knowledge of the 'exact'
product-forces although these cannot be computed until the final tensions
{to}+{8t}, as opposed to {t,}, are known. There is clearly no difficulty if the
applied load {8f} involves no change of bar tensions, but in most cases (6.20)
has to be incofporated in an iterative procedure in which the product-forces
are updated at the beginning of éach step. The number of iterations required
depends on various factors, For instance, if the subspace of the
product-forces 1s orthogonal to the column space only two iterations will be
needed; in more general circumstances 1t depends on the ratio between the
norms of the tension vectors before and after application of the loads.

This calculation has been done for the first of the above examples: a new
product-force has been computed and adjoined to [A] to obtain an updated

version of (6,21)

1/1.25 -1 0 -1.4615| 8¢, 0
1/2/1.25 0 0 8.9231| j 6t, 0
0 1 -1/T.25  -1.5385) |6t { = }oO
0 0 1/2/1.25 -9.0769f L o) L

Its solution is-{£§}={1.0232 -9901 1.1952 —.0513}T, from which {t}={3.2593
2.9901 3.”313}11 The norm of this tension vector is 5.5980, very close to 5.6138
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of the previous step.

The above treatment 1s all that Is required in the case of statically
determinate assemblies; but redundant assemblies need an extra computatiom:
every time a new set of bar tensions in equilibrium with the "fitted loads"
is available, a self-equilibrated system of tensions has to be added to
restore compatibility by means of (6.7) and (6.10). No correction has to be
made to the above examples, because the first one (Fig. 6.7) is staticalIy
determinate while the other (Fig. 6.8a), although redundant, is loaded in a
way which gives purely inextensional displacements.

As an example consider the load condition shown 1n Fig, 6.8b; for this new
{sf}, (6.22) yields {st}={-1 -1 O}T. If the three bars have equal axial

stiffness (6.10) gives x=2/3; and the updated tension vector is therefore

-1 1 100~1/3
{tl={to}+<=1% +2/3 (1)= £100-1/3
0 1 100+2/3

At this stage one can go back to (6.22) with updated product—-forces and start
the same procedure again.
The above calculation generates, together with the changes of bar

tensions, the inextensional displacements {di} of the nodes:
{di}=[{d1},...,{dm}]{a} (6.23)

here the column vectors {d1}p.“{dm} are the m inextensional mechanisms, and
the m-dimensional vector {a} contains the last m entries of {ég}. The final
inextensional displacements {di} are {0.0256 -0.05t3 0.0256 0.0513}T and
{0. 0.0333 O. 0.066T}T for the assemblies of Figs 6.7 and 6.8a, reapectively. To
obtain the total nodal displacements one still has to compute the extensional
displacements {de} due to the "fitted loads", which will be discussed in the
next section. One last remark on the displacements {di} is that they are not
rigorously inextensional, yet the source of the appreciable error connected
with .this can be removed at no expense by subtracting these unwanted

elongations from {e} before entering the procedure described in Section 6,3.
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The apprcach presented in this section is substantially different from
all the iterative techniques based on tangent/secant stiffness matrices
often used to analyse cable structures (see, e.g., Argyris & Scharpf, 1972,
Mdlimann, 1974 and Baron & Venkatesan, 1971). The work of Szabo' (1973) has
some points in common with the present one in that equilibrium and
compatibility statements are kept separate throughout; in fact although his
equilibrium, compatibility and flexibility matrices are submatrices of one
hypermatrix, in most parts of the analysis they are used independently. He
also attaches some importance to the rank of the equilibrium matrix. The
paper by Szabo' also deals with the response of kinematically indeterminate
structures to applied loads but he proposes to use the same approach as for
stiff structures within an iterative procedure. This technique ﬁas been
expanded and applied to the analysis of cable nets by Szabo' & Kollar (198Y),

J. Argyris is frequently acknowledgedE"ﬁ% one of the great contributors to
the advancement of the displacement method of analysis and its application to
non-linear problems, documented in, e.g., Argyris (1964) and Argyris & Scharpf
(1972). Here it is interesting to note that a whole chapter of Argyris (196l4)

is dedicated to the use of the force method in non-linear problems; an

iterative procedure allows for the (elastic) distortion of the structure when
the equilifnrium equations are written, by means of "imaginary loads" which
have some resemblance to the product-forces in [A'] although they are
Introduced for modes of deformation which are extensional, see Section 6.4.2.

Kuznetsov (1973) wrote a theoretical contribution on the mechanics of
assemblies with s8=0, m>0: he proposed to divide any applied load into
"equilibrium" and "supplementary" compeonents, and he derived a formula
equivalent to (6.19) by differentiating the equation of the constraint
imposed by a bar on the displacements of its end nodes. Kuznetsov's approach,
though, differs in a humber of detalls from the present method and its

validity is limited to small inextensional displacements.

6.3 Computation of extensional displacements

The nodal displacements of a rigid structure due to a compatirble et of bar
elongations {el are easy to compute: it was shown in Section 6.1.1 that it is a
‘matter of 'compacting' the elongation vector by discarding the elongations of

the statically indeterminate bars and then computing {d} from (6.12).
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Structural mechanisms cannot be treated in the same way because there 1s
not a unique solution when only geometrical conditions are invoked. In fact
the compatibility matrix [A]T enforces all such conditions, plainly in the
hypothesis of small extensional displacements; but the number of independent
equations (PA) is smaller than the number of unknown components of

displacement (3n-c). Therefore the system of equations

[A1T {de}={e]} (6.24)

cannot be solved uniquely; here {de} 1s the vector of extensional
displacements. Some more equations are needed., It might be argued that, all
the inextensional displacements {di} having been computed already, the
extensional displacement vector has to be orthogonal to the left-nullspace of
[A] and hence to the m inextensional mechanisms computed earlier. A total
number of m independent conditions of orthogonality of the form {di}T{de}=O,
which are precisely the number of extra equations that are needed to solve
(6.24), would be obtained in this way. But no sound structural principle
guarantees the validity of such conditions, and in fact they are wrong. A
correct set of equations is obtained by substitution of the m product-forces
for the inextensional mechanisms; and the correctness of this can be
demonstrated by writing m equilibrium equations in inextensionally deformed
configurations. The following proof relies on the existence of m
product—-forces, and hence of a set of initial tensions {t,} In equilibrium

with initial loads {f,}, before any displacement takes place. If there is no

prestress, no further conditions can be imposed and {de} is not uniquely
determined. _

For the purpose of this demonstration, start Dy considering a set of
entirely general bar elongations {e,}. First this is to be transformed into a
compatible set of elongations {e}; if s=0 {el}={ey}, otherwise (6.8) gives, for

{t}={0},
{e)=le,) +[FI[SS1{x} | (6.25)
where the unknown {x} is obtained from (6,10).
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The initial forces {f,} are 1n equililbrium with the bar tenslons {t,}
when the assembly is in its initial configuraticn; and the dlisplacements {de}
are compatible with the assigned elongations {e}. Virtual work relates the

external and internal work done by the systems defined above (Neal, 1964):
(£} T {de}={t,}T{e} (6.26)

Now consider the the new configuration of the assembly obtained by imposing
the (small) inextensional distortion due to mechanism {d;}. Because of the
way in which the product-forces were defined in Section 4.5, the forces
{fo}+{p;} are in equilibrium with the bar tensions {to} (f{p;} is the vector of
product-forces due to the mechanism {di}). Starting from the distorted
configuration, the displacements {de} are still compatible with the
elongations'{e} slnce the change of configuration considered was small,

Virtual work can be used again, this time to obtain:

({fo}+{p; DT {de}=(t,)T (e} (6.27)
Subtract (6.26) from (6.27) to obtain:

(pi3T{de}=0 (6.28)

which is precisely the anticipated relaticnship. Formula (6.28) provides m
equations in the unknown compeonents of displacement, o¢ne for each
product—-force. They supplement the ry independent equations in (6.24) and can

be written in matrlix form as:
(11T {de}=(5) , (6.29)

where [A']T is the transpose of the matrix deflned in Fig. 4.9. -The
{3n-c)-dimensional vector {%} contains the elongations of the statically
determinate bars as its first r, components; the remaining m entries are 0 in
order to impose the orthogonality of the last m rows of '[A'jT

{=product-forces) to {del.
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Formula (6.29) completes the analogy between the standard equilibrium
matrix [A4], whose trénSpose is the compatibility matrix of (4.9), with [A']
which performs similar functions in the more general class of problems
treated here,

The linear analysis of any kinematically indeterminate assembly is now
complete: inextensional and extensional displacement vectors can be added up
to obtain the total displacements, as shown in the following examples. Notice
that the procedures described for updating the product-forces while
computing {ég] and for elimlnating undesired bar elongations due to the
mechanisms, result in a (small) non-linearity in the overall behaviour of the
assembly. The method can cope, in its present form, with a large range of
statically determinate structures, but the computation may need to be
expanded when dealing with redundant assemblies; these further developments

will be investigated in the Section 6.4,

6.3.1 Examples and experiments

The extensional displacements of the plane frameworks in Figs 6.7 and 6.8 can
be computed by use of (6.29), For the sake of simplicity the axial stiffness
(AE)i of bar 1 of either framework 1s ftaken as 100 (expressed in the
appropriate units)., Starting from the assembly in Fig. 6,7 the elastic bar

elongations are given by (6.2):

Y1.25/100 1.0232 L0114
{el=[F1{st}= 1/100 0.9901; = <.0099
vY1.25/100| {1.1952 . 0134

The 1nelastic elongation of each bar, in consequence of the inextensional
displacements computed in Section 6.2, is equal to the difference between the
exact length in the 'inextensionally' distorted configuration (computed by
Pythagoras' theorem) and the original one. The vector of inelastic

elongations turns out to be
{e,}={.001%4 .0052 .0015}T

A1l the bars of this truss are statically determinate, hence all the above
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elongations are certainly compatible, The first three entries of {-g-} in (6.29)

are given by
fe}-{e,}={.0100 .0047 ,0119}T

Using the final expression of [A'], (6.29) becomes:

1//1.25 1/2/1.25 ] 0 . 0100
=1 ] 1 0 L0014
fde}=¢ 00T
0 0 -1/¥/1.25 1/2¥/1.25 L0119
-1.4615 8.9231 -1.5385 -9,0769 0

The solution of this is {de}={-.0035 .0293 .0012 .0291}T. The total nodal

displacements of the assembly of Fig. 6.7 are therefore

.0256 (-.0035 0221

_ -.0513 0293 ] |-.0220
td=tdit+lde}= oocs () .oo12( ") .0268
.0513 .0291 0804

The assembly of three collinear bars in Fig. 6.8a has no extensional
displacement, but the largest bar elongation due to {di} is in this case
.0022. So long as this error is negligible, the results of the linear analysis
are acceptable and {d}={dilL |

Now consider the second load condition, displayed in Fig., 6.8b. The main
difference from the computation shown above is that no improvement in the
accuracy of the solution is usually achieved by subtracting the inelastic
" elongations {e,} from the elastic ones.- This result is not unexpected since,
in assemblies with s>0 and m>0, {e,} is not merely a side—effect of an
essentially correct computation but irt may be an important factor {see
Section 6.4) which leads to an increase in the level of selfstress. Therefore
this effect will be neglected altogether in this example, Taking all axial .
stiffnesses to be 100 the compatible elongations of bars 1 and 2, which are

statically determinate, are
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- 1/100 -1/3} {-1/300
[e}=EF]{d}=[ ] 3.3
17100 J-1/3{ }-1/300

And (6.29) becomes, with [A'] from (6.22),

1 0 0 o -1/300
-1 0 1 o0 ~1/300

o 200 o -100| 19" %

0 -100 0 200 0

The extensional and total displacements are therefore:

{de}={-.0033 O -.0067 0}7T
{d} ={-.0033 .0033 -.0067 .0667}7

The theoretical foundations of the method described in this section are
¢learly sound and one ﬁould expect 1ts results to be correct, within the
limits of validity already discussed. For the sake of completeness the
theoretical argument presented above has been supplemented by several
experimental and numerical tests.

For instance, two very simple experiments were conducted to test the
accuracy of (6.29) with reference to statically determinate assemblies; in
the first one, see Fig, 6.9, two equal weights were hung from a thin copper
wire whose ends were fixed to a vertical board by means of drawing pins at the
same level., The assembly consisted therefore of two Inclined cable segments
on either side of a horizontal one, as in Fig, 6.7. Incldentally, notice that
the product-forces of the assemblies in Figs 6.7 and 6.9 are proportional and
can be assumed for present purposes to be equal, so that [A'] is known already.
The test consisted in measuring the displacements caused by a shortening of
10mm of one of the side members, which was obtained by letting 10mm of wire
slide through the left-hand pin. No extra loads were added and the measured
displacements were indeed small compared to the bverall.dimensions: the
elastic elongations of the segments areé negligible compared to the Imposed

one. A sheet of graph paper stuck on the board holding the pins was used for
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all the measurements; no magnifying instruments were used to take readings.
Two independent estimates of the nodal displacements were obtalned from
(6.29) and from the non-linear finite element program 'described in the
Appendlx; the results are presented in Fig. 6.9 and they demonstrate the
accuracy of the present method.

A similar experiment was done on the layout of Fig. 6,10. Again the first
segment was shortened by 10mm and the nodal displacements were measured and
compared to theoretical estimates.

Other equally successful but purely numerical tests were conducted on
redundant assemblies: these employed the f.e. program described in the

Appendix and will not be described here.

6.4 Corrections to the linear theory

Limitations of the linear theory developed in Sections 6.2 and 3 have been
pointed out already; in essence that theory 1s wvalid if the nodal
displacements are sufficiently small. In order to extend the validity of the
linear computations to a wider range of nodal displacements two entirely
independent corrections will be introduced here, the first of which applies
only to redundant assemblies. An elementary example will introduce the
problem.

Figure 6.11 shows an assembly of two collinear bars; plainly m=s=1 and the
inextensional motion consists of a vertical displacement of the node. The
state of selfstress consists of equal bar tensions, which have been set to to.
The load shown in Fig. 6.11b excites the inextensional mode and, within a
small range of vertical displacements, the linear analysis applies. The
layout is very simple and therefore its response can be obtained in closed
form: the only component of displacement is y, and the bar tensions have to be
equal for any value of W because the load condition 1s symmetrical. The above
remarks apply to displacements of any magnitude, of course. It can be
initially assumed that the tensions in the bars stay constant although y,
might impose considerable elongations. On this hypothesis the force wp ('p
stands for prestress) which equilibrates the assembly in the distorted
configuration defined by Y, can bhe obtained from an equation of equilibrium

in the vertlcal direction:

159




Iﬂ"“““ 160 —=t+—160—=+—160 -—"*
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a) BO
2
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W

/

Displ. | Experimental | from (6.29) | from f.e.
X, -5. -5.2 -5.0
V2 -12.5 -12.1 =12.7
Xq -5.5 -5.2 =5.1
¥ -11. =10.4 -11.1
Fig. 6.9 Schematic description of an experiment to test the validity of

(6.29), a) shows the initial configuration. Both configurations
are shown in b), where the final configuration has been drawn
with a thinner line. The table compares measured and estimated

nodal displacements. All dimensions are in [mm]. -

1

o 150 =150 ——{=— 50 —~=—50——
Y

160

a)
b)
Displ. sxperimental | from (6.29) from f.e
X -5.5 =54 -5.4
YZ _805 —8-7 _8-8
X3 -5.5 =5.5 -5.5
Vi -8. -8.2 -8.4
Xy -3.5 -4,2 -4.2
Yu -, -4.2 =U4,3
Fig. 6.10  Cf. Fig. 6.9.



W,=2tosin arctan I* (6.30)

(=S

This expression resembles (6.19), which defined the product-forces, and in
fact the two coincide if %’ is small, The elastic bar elongations due to y,
are equal to {l/cos arctan %?)-1 and the consequent change of bar tensions is
§t=AE[(1/cos arctan %2)-1]. The vertical force W, ('e' for elastie) 1in

equilibrium with 8§t is obtained by replacing t; in (6.30) by &§t:

we=2AE[(1/cos arctan %2)—1]sin arctan %2 (6.31)

In conclusion:

W=Wb+we=2{t°+AE[(1/cos arctan %2)—1]}sin arctan %3 (6.32)

The load/deflection curve according to this expression has been plotted in

Fig, 6.12. For small values of %?, sin arctan %zzarctan %?=%2 and

cos %3=1-[%3]2/2. MNeglecting terms of higher order (6.32) becomes:
W=AE[%2]3+2to%2 (6.33)

This is plotted in Fig. 6.12. In most structural applications the strain in
the material is not tco large and it can be assumed that (6.33) gives an
accurate description of the behaviour of the structure in Fig. 6.11. The
right-hand-side of (6.33) consists of a linear term, which accounts for the
'geometrical' stiffness of the assembly due to prestress, and of a cubic term

due to the increase in the level of bar tension. Results from the linear
Yz,
Ol'
theory does not 'know' that part of the applied load will be equilibrated by

theory are acceptable so long as AE[%)3 is small compared to t the linear
the 'elaatie¢' component W, and therefore 1t overestimates the nodal
displacement y, but underestimates the bar tensions,

This can be corrected by the introduction of a reducing factor Y (0<Y<1)
that multiplies the initial estimate, ?2, obtained from the 1linear
computation; an equgtion of equilibrium in the unknown Y is then obtained by

substituting Yy, to y, in (6.33):
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inaa - - y l - - -
~Zil

t+6t

a=arctan y, /1
Fig, 6.11 a) Initial configuration. The axial stiffnesses of the bars are

equal. The prestressing tensions are {ty l=t,{1 1171,
b) Distortion due to W.

25 - exact /

i —— - approxi.mate

AE/T=500

0 lllllri1lirffl|Iill]illlll'lll

0.00 0.05 0.1 0.5 0.20 0.25 0.30
y2/t

Fig., 6.12 Comparison between (6.32) and (6.33). The lower value of AE/t,
corresponds to a rather low value of the initial prestress, if

the assembly of Fig. 6.11 is made of steel,
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W=AE(y,/1)%Y3+2t,(y,/1)Y (6.34)

Apart from the initial displacement y,=W1/2t,, computed according to
Section 6.2, the numerical coefficients of (6.34) depend on the elastic axial
stiffness of the bars and on the level of prestress. This approach was first
proposed by Pellegrinc & Calladine (1984). It should be added that the level
of selfstress does not change appreciably in statically determinate
assemblies,

Do these conclusions apply to more general situations?

The answef' is yes, and this can be demonstrated by analysing the response
of the saddle-shaped cable net shown in Fig. 6.13, a more complicated

redundant assembly, to a system of product-forces. The components of load are

{ 3.23 -3.23 -9.68 0 =-.62 0 -3.23 -3.23 9.68
.62 0 0 0 0 0 -.62 0 0
3.23 3.23 9.68 0 .62 O =3.23 3.23 -9.68 }'

equal to the product-forces corresponding to the Iinextensional mechanism

1. -1. =-2.5 0 =~.6887 0 -1. -1, 2.5
.6887 0 0 0 0 0 -~-.6887 0 0
1. 1. 2.5 0 .6887 0  ~1. 1. =-2.5 }7

The finite element program has been used to predict the behaviour of this
cable net for different values of the load factor, This assembly has also been
tested experimentally, and in fact the level of prestress in this numerical
test has been set the same as in one of the experiments, which will be
described in Chapter 7. Figure 6.14 shows a plot of the load factor against
the component‘s of displacement of node 5, chosen arbitrarily; although each
graph is non-linear the ratio between these components of displacements
remains approximately constant at 1/-1/-2.5, as in the infinitesimal
mechanism. The figure also shows a plot of equation -1,1479,10°z%-.0408z, the
coefflcients of which were chosen to obtain a good fit with the 'exact' curve,

As a further test the same cable net was loaded by the vector of

product—-forces corresponding to the mechanism
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Fig. 6.13

Lfd

£

l"»l S 1%

Plan view of the saddle-shaped cable net first examined in
Section 6.4, 411 the boundary nodes are fully constrained; more
details of the geometry, material properties and prestress are
given in Chapter T. ' .

By inspection, this structure has n=21, b=24, ¢=36 and hence
3n-b-c=3. the analysis described in Chapter 4 shows that FA=59,
3=1 and m=4.

The z-axls is directed upwards. The 3 cables parallel to the x,2
plane are hogging (i.e. have negative curvature), the others are

sagging.
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This mechanism clearly does not enjoy the same properties of symmetry as the
one considered above, but Fig., 6,15 shows that all the properties noted in
Fig. 6.14 still hold.

All  of these remarks demonstrate that, provided the numerical
coefficients of the third-order equation that replaces (6.34) in more general
cases are estimated correetly, the non-linear response of a cable net to any

of its product-forces is comparativelyveasy to predict.

2

6.4.1 Non-linear corrections for redundant assemblies

The need to compute a factor Y that reduces the 'inextensional! displacéments
{di} obtained from (6.20) and (6.23), and proportionally increases the level
of prestress of a redundant framework which is loaded by 'large’ forces, has
been stressed already. In this section virtual work will be usedl to
demonstrate the validit& of a generalized form of equation (6.34); this new
equation will allow the computation of Y. Notice that, although all the
results obtained here are qualitatively the same for all statically
indeterminate assemblies, the treatment will be confined to the case 8=1
which is of interest at present.

A side-effect of the linear theory is that a set of elongations {e,}
= first introduced in Section 6.3 for statica}ly determinate assemblies - is
associated with an ‘'inextensional' distortion. In the case of redundant
assemblies this effect becomes a little more complicated, because any
'Inextensional' distortion is also accompanied by an increase of the level of
pretension, and will be introduced here by means of an example.

The assembly shown in Fig. 6.16 is similar to Fig. 6.11, and in particular
its bars still have equal AE, but the line of action of W = which still
coineides with the direction of the mechanism - is no longer an axis of
symmetry of the assembly; hence the substantial change in the prestress level
which aooompanies.any large 'inextensional! distortion due to W leads to bar
elongations which are not equal to those associated with the mechanism. See

Fig. 6.16b. Thereforelloading this assembly By forcé components which are
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Fig., 6.14

Fig. 6.15
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Components of displacement (Node 5)

Load/displacement graphs for the cable net of Fig. 6.13, under the
first load system described in Section 6.4, Starred points
correspond to results from a finite element oomSputation; an
'approximate' dotted line of equation ~1.1479.10 223-0.0408z has
been fitted.
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Load/displacement graphs for the cable net of Fig. 6.13, under the
second loading system described in Section 6.4,
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proporticnal to the vector of product-forces causes its only node to move
along a path tangent to the vector representing 1ts inextensional and
infinitesimal motion. In the case of Fig. 6.16b such a path has been obtained
graphically, but the knowledge of the entire paths described by all nodes of a
complicated framework is not needed in practice,

Thus, the first requirement at the end of the linear analysis is to
restore the violated 'geometrical compatibility' by letting each node return
to its path (equilibrium considerations are left aside at this stage): the
undesired elongation of each bar associated with the inextensional
displacement, computed from (6.23), is calculated as the difference bhetween
final and initial lengths {both computed by Pythagoras' theorem). In the case
of statically determinate assemblies these elongations {e,}, changed in sign,
could be used in (6.29) to compute the related extensional displacements. In
the present case -{e,} may not be compatible and therefore, after (6.8) and

(6.10), the elongations to be used in the computation are:
{el=—{e }+[FI[Ss]x . (6.35)

where x=[581T{e,} /{8517 FI[sS].
| Here [SS] is just a column vector, as s=1.
Obviously the elongations of ‘dependent' bars have to be dropped when one

solves:
- ar1Tae) =% | (6.36)

Here {dc} denotes the vector of correctingrnodal displacements such that the
configuration defined by {di}+{dc} is geometrically compatible.

But equilibrium will not be satisfied in this configuration because the
level of selfstress has in the meantime increased to {t,}+[SS]x. A parameter Y
i1s therefore introduced in the analysls {(0<Y<1) to reduce the inextensional
displacements by Y and increase accordingly the initial selfstress by 1/7Y.
The cofrecting displacements will be reduced to Y?{dc}; the reason for the
power two appearing at this stage 1s that the bar elongations - and hence the

correcting displacements —~ asscciated with an infinitesimal
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mechanism of order one are of second order, Note that this is, visually, in
agreement with Fig. 6.16.

Now the assembly will be allowed to move with its nodes resting firmly on
rigid ralls cof 'paraboliec shape!, in search of an equilibrated configuration.
The equation that determines ¥ will be obtained from virtual work, and the

configuration in equilibrium under the applied loads will be:

Y{di}+Y*{de} {6.37)

In this configuration the total load {f} is in equilibrium with the bar
tensions given by the sum {t,}+{8t}+[38S] x ¥?, the individual terms of which
are the initial prestress, the bar tensions due to the "fitted" component of
{f} and the increase in selfstress level computed above, respectively. The
last term of the sum contains Y?* because, being a consequence of the
non-inextensiocnality of the mechanism, it varies with the same law as {dc}.

An infinitesimal displacement From the configuration defined in (6.37) is
obtained by differentiating it with respect to its only variable, Y; this

gives

({di}+2{dc}Y)dy

The elongations compatible with this displacement are 2[F][S83] x YdY. This is
because the correcting elongations that correspond to the configuration
(6.37) are Y?{e,} from the argument used above. Differentiation yields
2{e,}YdY but only the component of {e,} which gives rise to selfstress needs

to be considered, hence the expression given above,

Forces Displacements

External {f} ({di}+2{de}Y)dY
Internal | {t,}+{8t}+[3SS] x ¥ 2[FI[sS] x YdYy

Table 6.1 Terms of the equation of virtual work in Section 6.4.1.

Ail symbols have their usual meaning; x 1is from (6.35).
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All the terms needed in the equation of virtual work have been summarized

in Table 6.1; equate external to internal work and divide by dY to obtain:

(3T (dey+2{r1 T {de}v=
2({to} +{6t}) TIFILSSIxv+2[s51 TLFICSSTx2Y?

This equation can be written in the form:

20551 LFILSSIx2Y3+20 ({t, )1 +(6t 1) TIFILSSIx={£} T {de} Iv+
-{£}T{a1}=0 (6.38)

This is a third-order equation of the type a;Y¥+a;Y-a,=0, the solution of
which completes this non-linear correction. This equation has peen
successfully wused in several hand and automatic calculations. The
coefficlents a, and a, have always turned out to be about equal and, taking
advantage of this, one can divide both sides of (6.38) by a, and use the

simplified form:

20551T[FILS51X% ya4y—qag (6.39)
{£37{ai)

The equality of a; to a, is a direct consequence of the linear theory. In fact,
on the assumption that the level of prestress does not increase, the loading
procedure consists of a gradual increase of load from {0} to {f} while only
the inextensional displacement {di} develops. Finally, the correcting
displacement {dec} takes place, The work done by the applied load in this
process is %{f}T{di}+{f}T{dc}.

The bar tensions have in the meantime increased from {t,} to {t }+{ét},
hence their work is ({to}+{6t})T[F][SS]x. Equating external and internal work
one obtains

~ -

Tty Trany+ie3Taed=(ttod+i6t 1) TTFILSSIx

from which the equality of a, to a, is plain,
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Does (6.39) agree with, say, (6.34)? The results of the linear analysis for
the framework of Fig. 6.11 are {&§t}={0}, {di}={0 Wl/ZtO}T, {de}={0}. The vector
of undesired bar elongations is {e,}=e,{1 1}T with e,=/12+y,2-1=W21/8t,2. The
equation [SS]T[F][SS]{x =[SS]T{e°} now becomes:

A1 1}[1/AE ]{1}:{:“ I}H W21
1/8E| 1 1] 8t,2

from which =x=AEW2/8t,2. Substitution of all these quantities into (6.39)
yields:

(AEW2/8t,®) Y3 +Y~1=0

and (6.34) can be easily put in the same form.

- 6.4.2 Product—forces cbrresponding to extensional modes

The stiffening effecfs of prestress, in the form of the so-called
product-forces corresponding to each of the m inextensicnal mechanisms, have
been extensively discussed. Indeed the modified equilibrium matrix [A'] has
been used throughout this chapter for the linear analysis of arbitrary
kinematically indeterminate frameworks,

Prestress has a similar linear effect on the extensional modes of the

assembly and these can be also included in {the first ra columns of ) [A'].
Consider again the assembly of Fig. 6.7, the linear analysis of which was

done in Section 6.2. In order to focus on this effect a load condition which

is purely ffitted" Wwill be considered, consisting of equal downward lcads of

magnitude W applied at nodes 2, 3. The 1live load vector 1is therefore

{sf}={o WO wil. Equation (6.21) gives the tension changes due to this load:

6t1=6t3=2/TT§§w, §ty,=2W. Of course, this result ignores any stiffening effects
of {t,}. The elastic bar elongations and the consequent nodal displacements
due to these changes of tension will upset (6.21), resulting in unbalanced
forces whose direction is éhown in Fig, 6,17. These forces are "linear
functions of the nodal displacements as well as of the initial tensions {to}s

they_also depend on {8t} but this can be neglected if {§t} is small compared
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Fig. 6.16 a) A modified version of the assembly in Fig. 6.1t. The state of
prestress is unchanged. Small loads W are equilibrated through
geometry-change effects; but larger loads cause an inecrease in
the level of bar tensions. This inerease is about equal to a
change in selfstress level, if the deflections are not too large.
Any increase of prestress involves bar elongations e, and e, in
the ratio e,/¢,=0,5, The path of node 2 is shown in (b).
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Fig. 6.17 Extensional distortion and oohsequent 'unbalanced' forces in the

assembly of Fig., 6.7, under the fitted load {0 WO W}T. AE is
constant for all bars, '
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“to {t,}.

Let bar h of the framework be one of the ra independent ones. A unit
change of tension in this bar produces an elongation vector {e,} in which the
component of position h is (1/AE), and the others are zero. If s=0, {eg} may
not be compatible, in which case compatible elongations {el! have to be
derived from (6.35); otherwise {e}={e,}. The (extensional) nodal displacements

{a} due to {e} are then computed from
(a1 (" =(5)

Now, as in Section 4.5, one can define the product-forces at node i,

corresponding to the extensional mode {dh}:

E(X1+xi)“(xj+xj)]top/(1p+ep)+[(Xi*axi)"(xk+xk)]toq/(lq*'eq):foix”’ix
[(Yi+yi)_(Yj+YJ)]top/(lp+ep)+[(Yi"'yi)-(Yk"'yk)]th/(lq q)=foiy+Piy {6.40)
{(Zi+zi)ﬁ(zj+zj)]top/(l +ep)+[(Zi+zi)-(Zk+zk)]toq/(lq+eq)=foiz+piz

e

Here all the symbols have thelr usual meanings. Note that the only difference

between (6.40) and (6.18) is that the bar lengths have now been 'updated'.

Neglecting terms of higher order, the product-forces are:

% —% . -X, | - =X, ]
Pix= X5 XJ"EE Xy XJ topt Xy Xk-fg X=Xy toq
1
1 lp p lp ) lq lq lq |
- 1 _ _
piya| Y1 Y3~ Y17 Y e op [V VK-% Xs el toq (6.41)
L lp lp lp,_ i ‘lq lq lq |
(2.-2, -7 ] [
pig-| 21723-%p 417%4 top* |21 %k-%q 2372y tog
] lp lp lp ] i lq lq lq,

These approximate expressions are certainly acceptable for Hétk<“tJL The
above formulae define, fof the extensiocnal mode corrésponding to a unit
change of tension in bar h, a vector of product-forces to be added to the
cofresponding column of [A']. This takes into adcount-the stiffening effects

of {t,} but, unlike the product-forces associated with the inextensional
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mechanisms which must always be considered, the present ones merely refine
the calculation and are not needed in all circumstances,

Despite the complicated symbolism used by Argyris (1964), the "imaginary"
loads that he introduced are equivalent to (6.41)}. If one is using the
displacement method, the addition of the matrix of geometrical stiffness to

the elastiec one corresponds to the suggested modification of [A'].

6,5 Comparisons with theoretical and experimental results

Three structures will be considered in this section: the first one is a plane
assembly (Fig. 6.7) already encountered in Sections 6.2 and 6.3; the second is
the "Simplex", a three-dimensional tensegrity first introduced in Section 2,4
(Fig. 2.17), and the third is the saddle—shaped cable net of Fig. 6.13.

The 'hanging cable' of Fig., 6.7 was the object of an extensive numerical
investigation by Baron & Venkatesan (1971). These authors developed a
computer program for the analysis of geometrically non-linear structures in
which, for any given configuration of a cable structure, the stiffness matrix
is assembled by adding up elastlic and geometrical contributions in a way
similar to that described in the Appendix to this chapter. They used their
program to analyse the response of the assembly of Fig., 6.7 to different live
loads.

The geometry of the cable, see Fig., 6.18, is defined under an initial load

which consists of equal vertical loads of magnitude 17.792kN applied at

Joints no. 2 and 3. The additional load systems for which Baron and Venkatesan

published results are alse shown in the figure, Tables 6.2 and 6.3 show the
results of their analysis. The lcocad condition no. 3 had been previocusly
examined by Michalos & Birnstiel (1960), who devised an iterative procedure
In which one guesses a value for the horizontal component H of the bar
tensions (this has the same value in all bars because nc horizontal forces
are applied to the joints) and then computes the nodal displacements required
to equilibrate the nodes. Having moved from one end of the cable to the other',.
ohe finds that the end node has moved, although in fact it is constrained in
both the x and y directions. A new value of H is then assumed and the entire
procedure is repeated; a plot of end displacements versus trial values of H

provides its correct value.
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Fig, 6.18
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Cable structure analysed by Michalos & Birnstiel (1960), Baron &
Venkatesan (1971}, J.W. Leonard (Personal communication) and by
the present author., (a) Shows the initial geometry, which is
defined with an initial symmetrical loading. (b) Shows the load
cases examined in Section 6.5. Length and force units are [m,kN].
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J.W. Leonard (personal communication) also examined the response to load
condition no. 3 by means of a non-linear finite element program. Another full
set of estimates was obtained by the present author using the f.e. program
described in the Appendix. All of these results are given in Tables 6.2 and
6.3: the reader can verify that all the answers more or less coinclde. A common
aspect of the finite element computations is the comparatively large number
of 1ncrements in which the load has to be divided {(or the number of
iterations needed to reach convergence), always >10,

Finally, this cable structure was analysed in the way described in
Sections 6.2 and 6.3 with the computer program SINCA, also described in the
Appendix. The analysis is in this case essentially linear; scme iterations are
performed only at the beginning in order to allow for the change {8t} of the
initial bar tensions {t,} due to the "fitted" component of the load. The total
number of iterations was two for loading cases 1, 2, 3, 5; and it was three for
loading case 4. In all cases the total load was appiied in one step. The
results of this computation are also given in Tables 6.2 and 6.3. It has been
noted already in Sectlion 6.2 that load conditions such as 1 and 2 are
"fitted"; now compare the bar tensions estimated by SINCA, for these load
conditions, with all the other methods: it 1s plain that they are
over—estimated and, in particular, that the error associated with 1load
condition 2 is significantly larger. This is a consequence of having
neglected the product-forces corresponding to the extensional modes,
introduced in Section 6.4.2, The elastic bar elongations and (extensional)
displacements computed by SINCA are consequently overestimated, see
Table 6.2.

The remaining load cases involve significant inextensional components of
displacement; note that all estimates almost coincide in the case of loading
case 3. In terms of displacements, the largest error made by SINCA 1s in
loading case 5, in the x-component of node 2, with an overshoot of 13mm that
corresponds to an error of 8,5% (compared to the largest displacement).
Tensionwise the largest error is of 2,8kN in loading case 4: the corresponding
error is 3.3%. _

Motro (1983) tested a physical realization of the "Simplex", see
Figs 6.19, 2.17 and Y4.23a, made out of three steel tubes and nine high-tensile
steel cables. Steel plates, welded at the tube ends and stiffened by gusset
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Fig. 6.19

Constraint

Rigid base

Hinge connecting lever to rigid base
Lever

Applied lead

Cable transferring load to upper ncde

MmO QW

Axial stiffnesses: .cables (AE)equivalent=1.6OMN
tubes AE=65.0MN

Loading scheme adopted by Motro (1983) for his investigation
into the behaviour of the "Simplex". See Section 6.5.

Equal vertical forces are applied to nodes 4, 5 and 6. Notice that
only node 2 is fully fixed: ncdes 1 and 3 are free to move in the
x—-direction and 3 can also move in the y-direction {the system of
axes 1s shown in Fig. 5.6). The total number of constraints is
therefore six.

The figure is based on Fig. 114.1 of Motro (1983).
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Component Loading case
of displ.! 1 2 3 Y 5
X, .668
Michalos & Yz -1.32
Birnstiel Xs 596
{1960} ¥ 1.23
X, |73.23.1073 -9.36.107° .667 1.33 .765
Baron & Vs .2h4 .704 =1.32 ~2.69 -1,52
Venkatesan X3 3.23.1073  9.36.1072 .594 1.04 671
(1971) Va 2uy 704 1.23  2.20 1.35
Xz 660
J,W.Leonard Ya 1.33
{(private comm.) X, .604
¥a 1.25
X, |=3.23.1073 -9.40,1072 .668 1.33 .765
f.e. progran ¥, L2400 .706 -1.32 -2.69 -1.,52
see Appendix %, 3.23.1073 9.40.107° .595 1.04 .668
¥a L2uY 706 1.23 2.20 1.35
X, ~3.36.1073 ~,101 673 1.32  .778
SINCA Yz 255 .764 =1.33 -2.79 -1.54
see Appendix Xs 3.36,1073 -.101 599  1.09 .679
¥s .255 LT64 "1.23 2,22 1.36
Table 6.2 Components of displacement [m] of the cable structure
shown in Fig. 6.18.

plates, were the points of anchorage of the cables, In Motro's model the
length of ‘all cables was 1420mm and the tubes were of length 2085mm. Hence the
nodal coordinates of the selfstressable configuration can be obtained by
multiplying the values in Table 5.5 by 1420mm. Figure 6.19 shows the loading
device used to apply three equal vertical loads at the top nodes; and it is
possible that the applied load did not remain purely vertical during the
teét. The nodal components of displacement were measured by using
theodolites, and most member tensioné were derived from the measured

displaoements of their ends, (A more complete description of the model,
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Member Loading case
number{ 1 2 3 4 5
Michalos & 1 53.7
Birnstiel 2 49.2
(1960) 3 56.0
Baron & 1 68.5 125. 53.8 82.3 56.5
Venkatesan 2 61.4 110, 49.4 77.8 52.0
(1971) 3 68.5 125. 56.0 89.0 53.8
1 53.5
J.W.Leonard 2 49,0
{private comm.) 3 55.7
1 68.7 124, 53.7 82.4 56.4
f.e. program 2 61.2 110, 49,2 77.6 51.9
see Appendix 3 68.7 124, 56,0 89.0 54,0
1 69.6 129, 53.5 80.5 56.0
SINCA 2 62.3 116, 48.8 75.0 51.3
see Appendix 3 69.6 129.  55.7 87.4  53.6
Table 6.3 Bar tensions in the cable structure shown in Fig. 6.18
[kN].

details of measurement techniques and treatment of data are available in
Motro's thesis).

In one of Motro's experiments the (adjustable) cable lengths were given
‘precisely the value required to obtain a prestressable structure and, without
prestress, the vertical lcads were increased from 0 to 5kN in four equal
increments. Figures 6.20 and 6,21 show the experimental results, as presented
in Fig. 135 of (Motro, 1983), together with numerical predictions based on the
program MULCA, described in the Appendix. This computer program was primarily
intended for prestressed cable systems but it can be used equally for
structures the members of which are either in tension or compr'ession; it ecan
be also applied to assemblies in which the level of initial prestress is zero,
by aésigning a fietitious prestress and treating all the results ac‘cordingl‘y.

The measured member ten_sions compare satisfactorily with the results

from the present method, see Fig. 6.21. The corresponding nodal displacements
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Fig. 6.20 Comparison of experimental and theoretical nodal displacements

of the "Simplex", The experiments were performed by Motro (1983).
The horizontal components of displacement are much larger than
the vertical components, as in the inextensional mechanism shown
in Fig. 4.23b. The discrepancy between experiment and theory is

discussed in the Section 6.5.
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Comparison between experimental and theoretical member tensions
of the "Simplex". The experimental results are from Motro (1983).
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do not compare as well: all experimental displaceméﬁts appear to have been
substantially overestimaéed by the theory. Is this because of a fault in the
scheme of calculation implemented in MULCA? This peoint was investigated by
ineluding in the comparison a third estimate, from the f.e, approach {in which
very small load increments had to be used in order to cbtain convergence); it
was found that this gave results close to MULCA. There is also an
ingonsistency in Motro's published data since a comparison of the tensions
measured in the side cables ~ see Fig. 6.21 - with those estimated from the
elastic strains due to the 'measured displhcements at the final load showed
that the last values were about 30% lower than the bottom value of the
experimental range. The present author's view is that an initial (possibly
unmeasured) distortion of the model occured during the initial adjustments
which, according to Motro's aceount, were carried out with the top nodes
"supported to counteract their selfweight and the weight of the loading
device', The consequeﬁt distortion might have beenh large hbecause the slze of
the nodes, with lineér dimensions of about 100mm,certéinly made them heavy.

The third test is purely nuherical; it consists of a compariscon between
the response of fthe cable net of Flg, 6,13 to one of its vectors of
product—-forces, equal to the first load system considered in Section 6.4, as
predicted by MULCA and by the f.e. program mentioned previously. As already
noted, this cable net was built and tested, but not under this particular
load. In the physical model the breaking load for the wires was found to be
about 350N, and therefore the maximum load multiplier of ten which 1is
considered in this numerical ftest can be stlll regarded as an 'in service!
load condition for the cable ret.

Althbugh the largest components of displacement of node 5 (Fig. 6.22) are
of the order of 3/100 of the total span, they have been predicted very
accurately. But the figure shows that the error 6n one of the components of
displacement of node 6 is rather large, Similarly for the bar tensions
(Fig. 6.23): the agreement is rather good for bars 1-4, 9-16 and 21-24 but
MULCA leads to an overestimate in all segments belonging to the cables
passing through the origin, for which the sag/span ratio is small at the
beginning and decreases even further. ;

It could be argued that these errors contradiet the basis of

Section 6,4.1, namely fhat the main effect of a product-force is to increase
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deflections of the cable net shown in Fig. 6,13, The load system
consists of the product-forces specified in Section 6.4,
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Bar tenstons [N]

approach |

Load fcctor

Fig, 6.23 Comparison between two different theoretical estimates of
tensions In the cable net shown in Fig. 6.13. See Fig. 6.22.
Due to the symmetry of the applied load, the tensions in all of
the members can be obtained from this figure.
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the level of selfstress without altering the relative values in the different
members, which relies on the overall geometry not changing too much. But these
are precisely the limitations of the theory which have been violated; and it
should be expected that, when the applied loads flatten the net in the middle,
this type of side-effects develop.

It can be concluded that the analysis of the response of a kinematically
indeterminate framework to a loading system, along the lines of this chapter,
is more efficient than the standard formulations based on a 'stiffness’
matrix, as noted already; because the present approach does not divide the
load into small increments and performs a reduced number of iterations.
Another major advantage of the present approach is that it gives correct
results (if one neglects the - small - errors discussed above); because it is
well equipped for dealing with structural mechanisms, and therefore it never
attempts to solve an ill-conditioned system of equations. However, as it is
usual, when developing a formulation which takes the bar forces as unknowns,
instead of the nodal displacements, one has to deal with a more 'articulate'

algorithm.

Appendix

The geometrically non-—linear finite element program which has provided a
'reference' answer on a number of occasions, and that will be used to find
further theoretical comparisons for the experimental results of Chapter 7, is
made out of a (small) subset of Fortran subroutines written by T. See and
I.M. Kani for the elasto-plastic analysis of three-dimensional structures.
Details of the more general versicns of the program can be found in See
(1983) and Kani, McConnel & See (1984). One speclal feature of the present
vérsibn is the possibility for the user to assign a set of bar stresses, due
to an initial lack of fit of any member, together with any applied nodal
loads. These tensions can be used to define a state of selfstress, in which
case zero nodal displacements should occur in consequence of them. In fact
this observation isronly valid in theory bécause all formulations based on a
stiffness matrix do not cdpe well with zero displacements, and Aénce cannoct
converge unless a small load is applied at the same time. A self-explanatory

flow chart of the brogram is given in Fig. 6.2M4.
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DATAR - reads data

l

DATAD prints data
INITAL initialises to zero all arrays
incrementation loop |
INCLOD inerements loads (and bar stresses)
iteration loop FORMRO rotation
matrices
ASSEMY assembles STIMG2 stiffness
stiffness matrix matrices
ELASS assemblage
BOUND imposes boundary conditions
- SLBSI s¢lver
UPDATE updates geometry
RTOMG2 evaluates new length of members, change
I of strain and stress in each bar
CONVR1 assembles nodal forces for each bar
and compares them with load
Convergence?

Max. no. of iterations?

RESULT prints results
;
I
STOP
Fig, 6.24 Schematic flow chart of the non-linear finite element program

referred to in Chapters 6 and 7.
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Two Fortran programs have been written by the present author: SINCA and
MULCA, The first one performs precisely the calculations described in
Sections 6,2 and 6.3 for any kinematically indeterminate but statically
determinate assembly which has been prestressed by an initial {("fitted") load
and is then subjected to the action of a live load. The name SINCA comes from
the SINgle CAble problems for which the program is intended. MULCA (MULtiple
CAbles) deals with pin-jointed assemblies which are kinematically and
statically indeterminate, with s=1, and therefore it imposes the condition of
geometrical compatibility (6.9) in order to obtain the bar tensions; it also
performs 'both of the non-linear corrections described in Section 6.4,
Schematic flow charts of both programs are shown in Fig. 6.25.

Lastly, although no formal comparison of the relative speeds of these
programs has been attempted, it emerges from all the computations that the
two programs written by the present author are up to five times faster than
the f.e. code. In par‘ticulér-, MULCA has been 2-5 times faster 1in the
computétions described in Seection 7.4; the worst of these results being in
connection with the larjgest of the cable hets loaéled by inextensional load
conditions. Furthermore, some finite—element computations have 'converged' to
the wrong answer ~ at first ; in which case the correct final configurations

were obtained by r'epeatihg the calculation with smaller load increments.
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a)

INP: inputs all data, except initial

load. /
EQAN: evaluates mechanisms, see

Section 4,2; inputs initial 1load

EQMAT: assembles [4],
equilibrium matrix, see
Section U4.1.1.

{f,}, and evaluates tensions {tel}
due to it.

LOAN: (for each load system) inputs

load {&f}, computes tensions {§t}|___

and  inextensional displacements

ELIM2: transforms [A] into
an echelon form, and
records all operations in

LI,

EQMAT

{dl}, see Section 6.2. It also
computes bar elongations and

extensional displacements {de}, see}

PF: assembles the product
forces

Section 6.3.

b) ,INP:inputs geometry of cable net.

Flg. 6.25

SEGLEN: computes initial lengths of

cable segments. [

EQAN: evaluates mechanisms and
states of selfstress.

LOAN: inputs no. of load systems and
initial prestress.

For each load system, it inputs the
load {&f}, computes the tensions
{8t} and extensional displacements

ELIM1: solves systems of

equations

EQMAT
ELIM2

EQMAT
PF
ELIM1

{de} due to the fitted component of
the load, the inextensional
displacements {di} and the
correcting displacements {de}. See
Sections 6,2 and 3. Finally, it
performs the non-linear correction
to evaluate Y by solving (6.38).

PF1: computes product-
forces corresponding to
extensional modes, see
Section 6.4.2

Schematic flow charts of the programs SINCA (a}, and MULCA

(b), which perform the computations deseribed in Sections 6.2,

6.3 and 6.4, See also the Appendix.
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7. Experimental work

A large number of experiments on cable systems has been conducted in the
laboratory to build up a reliable set of data against which any numerical
estimate based on the theory developed in Chapter 6 could be tested. The
background and aims of the investlgation will be described in Section 7.1, and
the experimental techniques used (or merely attempted) in Section T.2. The
description of the tests and the results obtalned, together with comparisons
with numerical data from SINCA, MULCA and finite element computations,

constitute the remaining part of this chapter.

7.1 Background and aims

Several experimental and theoretical investigations into the behaviour
of ecable structures have been made in the past. Leaving aside studies
conducted earlier than the year 1960, brief accounts of which can be found in
Pugsley (1957) and Irvine (1981), the first geometrically non-linear
formulations of the analysis of this type of structure were started in the
1960's. The need for a reliable background of experimental knowledge then led

L some of which have been

to tests on hanging cables and cable trusses
described by Krishna & Sparks (1968), Buchholdt (1970), Buchholdt & McMillan
(1973), and on three-dimensicnal cable nets by Siev (1967), Krishna & Agarwal
(1971). _

Once the accuracy of the numerical methods had been demonstrated, most of
the subsequent investigators referred to earlier computations instead of
performing their own tests. This approach has also been followed, with only a
few exceptions, by the present author in Chapter 6. Recent experimental
~investigations have been concerned with more specific problems, such as
assessing the behaviour of a preliminary design of a cable roof for a sports
stadium in Iran (Nooshin & Butterworth, 1974) or the influence of boundary
deformations on the behaviour of a cable net (Thew, 1982).

When deciding whether the theoretical study described in this
dissertation was to be verified against experimentally, rather than merely

numerically generated data, it was felt that the novelty of the approach

' A cable truss is a plane éssembly consisting of two maln pretensioned
cables which are interconnected by vertical or inclined hangers/struts,
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proposed did require convineing evidence: something more convineing than just
a comparison with the results of the computations performed with the f.e.
program described in the Appendix to Chapter 6. The practical impossibility
of obtaining complete results for the investigations performed by other
researchers and reported briefly in the literature, whilch included - for
instance - the horizontal components of the nodal displacements; and the hope
of accumulating experience on the statical testing of cable systems that
could help in a future investigation of their dynamies, were the main reasons
for performing the experiments described in this chapter.

The aims of the whole seriles of experiments were to measure the response
of different cable systems (with s£1, as in Chapter 6) ~ made out of thin wire
so that unwanted effects such as self-weight, non-linear constitutive
relationships of cable strand, bending stiffness, etc. were negligible - under
a wide range of loading conditions. For each configuration of the system, the
components of nodal displacement and the cable tensions were to be measured
to a high degree of accuracy. The only constraints on the physical dimensions
of the models were imposed by the availability of space in the laboratory and
the dimensions of existing elements of scaffolding, to which all cables and

transducers were to be connected.

7.2 Experimental techniques

This section contains the description of the experimental set-up; it also
includes details of a novel wire-tension transducer. Finally it describes an
unsuccessful attempt to Ameasur'e the changeAin the tension carried by a
segment of a structural wire by relating it to the change of its electrical

resistance.

7.2.1 Wire properties

High tensile steel piano wire of a single cross section ('27 gauge'
corresponding to a diameter of 0,42mm) was used for all tests. All the wire
came from the same reel and a segment of it was tes'ted. in a Hounsfield
tensometer; its behaviour was practically linear until the maximum tension of
340N was attained. The wire tensions were well below this value during all the
tests. The standard value of E=210kN/mm?, for the Young's modul'us, was found to

be acceptable.
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7.2.2 Connections

The models for the experiments on hanging cables were built by hanging
the required length of wire between two end points at the same level; a small
quantity of epoxy glue was used to fix the load hangers and the displacement
transducers to the main cable. The cable was connected to the supporting
frame by winding heads of the kind used on guitars: they were also handy to
adjust the total cable length, see Fig. 7.1a. The same devices were used for
the boundary nodes of the cable nets; in this case the internal nodes required
a strong connection between the two perpendicular wires and a hanger loop,
hence the connection shown in Figs 7.1b, 7.1c and 7.1d. These internal nodes
were adjustable so that the lengths of the individual cable segments could be
modified when the net was being set up. The mass of each node of this type was

less than 20g and was neglected in all calculations.

7.2.3 Supporting frames

Figure 7.2 shows sketches of the supporting frames for the smaller cable
net; all the others were similar. The main frame was expected to behave as a
rigid foundation for the cables: therefore the maximum deflections of the
channel girders were estimated, and bracing elements had to be added for the

larger net.

7.2.4 Measurement of nodal displacements -
Schlumberger egquipment was used because it allowed accurate and rapid
collection of results; 1t consisted of up to Tfifteen ’LVDT Sangamo
displacement transducers, one Amplifier unit with fifteen channels, one Orion
Delta 3630 data logger which printed digitally on thermal paper any reading
taken. The displacement transducers had a total travel larger than 100mm and
they were calibrated in such a way that the largest non-linearity in their
response was +0.3mm. 411 readings had been found to be accurately repeatable
and therefore it would have been possible to correct any error due to
non-linearity; but these errors wefe neglected. In order to measure the
component of displacement in a chosen direction of a given node, a transducer
was held fixed to its supporting frame at a distance of about 800mm from the
node, parallel to'the chosen direction and pointing towards the node. A.thin

and light rod of 'hypodermic' steel was used to connect the transducer plunger
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a)

Fig, 7.1

@

d) Cable Net
Node
STEEL BOLT IN WHICH HOLES AT '
RIGHT ANGLES HAVE BEEN DRILLED
£ Loading Weights

a) Winding head, consisting of a hard plastic (Tufnol) plug which
fits into the holes of the channel girders used for the
supporting frame; the guitar machine-head is used as a tensioning
device. : '

b) Cut-away view of a joint of a cable net.

¢) Connection of displacement transducers to a joint,

d) Loading arrangement to apply vertical forces.
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al

Fig., 7.2

\ Detail Figs 7.1b
‘ 7.1c

Detail Fig 7.1a

\

Lead cennection to amplifier/logger

. Transducer SN J : _
L, L
. ' / Transduter ext rod
b D Detail Fig. 7.1b
: i
\ o
>«
<
o
1

/ l n b - l
% Q{"‘ 1Tl
Floor mounting =2 | .

a) Cable net support frame, All main channel girders have
dimensions 305x89x1930mm®, with a square grid of bolt holes {not
shown here). :

b) Support frame for deflection transducers. It is entirely
geparate from the cable net support frame.

These drawings are not to scale.
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to the node; this connection wWas by means of g heat~shrinkable plastie
sleeving, very Flexible, to simulate pin-ended conditions, The friction in the
transducers was found to be very low: the forces applied on a node by the
whole measuring system, which were also neglected, varied in the range
0.03-0.20N according to its direction.

A large nodal displacement perpendicular to the_ﬂirection'in which the
transducer or Fig., 7.3 is acting has the consequence of altering its reading,
The error e turns out not to be very significant for moat of the experiments
conducted, hence all results are uncorrected. As a fipst approximation, the
reader can obtaln the error assoclated with any of the experimental nodal
displacements given in this chapter by using the correcting table given in
Fig. 7.3, with § equal to the largest of the two components of displacement in

the direction perpendicular to the one of interest,

7.2.5 Measurement of wire tension ’ .

A wire tension tranéducer was designed and built for these experiments.
Baéioally it is of the 'vibrating wire! type already used by Krishna (1968),
Nooshin & Butterworth (597H) and Thew (1982), but one important modification
has made it more accurate and portable. The starting point is that the
funidament al frequency of vibration or any wire in tension depends, leaving
constant all other parameters Such as 1ts length 1 and 3upport conditions, on
the value t of the tension, For a wire in which the bending stiffness is

negligible the theoretical relationship is:
£=(1/21t7m (7.1)

Wwhere m is the mass/ﬁnit length. For the Wire-used in the experiments, (7.1)
would give t=4.157,10 2xf2[Haz,N].

All the authors mentioned above devised instruments in which an
electro-magnet plucked the wire and then the electric slgnal picked out by
the electro-magnet itself was either sent to an oscilloscope or to a
frequency counter, For instance Nooshin & Butterworth (1974) measured the

beriod of 100 oscillations after each current pulse had excited the wire, In a

recent paper on vibrating wire gauges, which are wldely used at present in a

number of strain measuring instruments, Ewins {1985) récognized the decaying
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amplitude of the vibrating wire as the only limiting factor in their
application., One way of making the above system‘ﬁore accurate, but which would
involve a rather troublesome trial and error process, requires that the
plucking frequency is altered until the wire resonates, This 1s the
observation starting from which a more efficient solution has been developed.

Two electro-magnets have been connected to each other by a simple
electric cireuit: the first one picks up a signal due to any movement of the
wire, this signal is then amplified and sent to the other electro-magnet
which plucks the wire at precisely the required frequency. The instrument
which has been built following these principles reasonates in only a few
seconds a gauge length of 100mm, clamped at both sides, of the '27 gauge' wire
used for the experiments. In order to put a limit to the amplitude of the
induced vibrations, a thermistor has been connected in parallel with the main
amplifier. See Fig. 7.4. A frequency counter displays f. The initial ldea for
the present scheme was suggested by an old Maihak strain transducer which
works on a similar principle. ' |

For any measurement, the instrument was held by‘hand and clamped very
gently to each wire segment. Once the wing nuts holding the clamping blocks
had been tightened, the instrument was left hanging and the frequency was
obtained from the digital display of the counter.

The only source of error of this instrument is the manual skill of its
operator (plus, of course, the presence of kinks in the wire) which is likely

to lead to larger errors at low tensions. Therefore each measurement was

repeated three times; for tensions above 50N the experimental error was
always smaller thaﬁ.¢2N. The calibration curve, which was used for converting
all the readings into force units, was obtained experimentally; see Fig. 7.5.
The reader can verify that its polnts are not too distant from the
theoretical estimate obtained from (7.1). |
An approximate simple way of inecluding the effect of the flexural

stiffness and of the clamped ends 1s to use the formula:

2
f=212\}5ﬂzEI+tl (7.2)
m .

which adds up thé stiffness of a wire in tension (without any bending
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Fig, 7.3 Error due to joint displacements in directions perpendicular to
a transducer. §, € in [mm].
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Fig, 7.4

Circuit diagram of wire-tension transducer.
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Fig. 7.5 Calibration cur'vé for the wire-tension transducer described in

Section 7.2.5. Asterisks indicate experimental points.
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stiffness) to that of a fully clamped beam. The hypothesis behind the
derivation of (7.2) is that the shapes of the fundamental modes of a wire
segment and of a beam of equal length are identieal, which is not true. Yet,
(7.2) gilves in the present case t=M.157.TOn5xf2?1.65 [Hz,N], which is in rather
good agreement with the experimental curve shown in Fig. 7.5 (an analytiecal
expression for the experimental ecurve Iis given by t=4.33.10"5xf2~3.3).
Estimates which are theoretically sound can be obtained from the approach
described by Rayleigh (1894), which has been expanded in a recent paper by
Wittrick (1985).

Initially, an attempt was made to measure wire tensions from c¢hanges in
their electrical resistance. Although this method was referred to by Médllmann
(1974), serious difficulties were caused by the mechanical performance of the
nickel-chrome wire32 and by thermocouple effects which caused severe drift of

the readings.

7.3 Experiments on hanging cables

The three (initial) configurations of Fig. 7.6 were subjected to the
indicated load conditions; initial loads of different values were applied.
The figure also gives details on the initial configurations, measured before
starting each test; plainly these change by small amounts when the value of
the initial load. is altered. All of the computer analyses performed were
based on these values.

The layout considered in the first test is similar to one of the
assemblies studied in Chapter 6. The structural model showed very clearly the
existence of a mechanism in which nodes 2 and 3 :noved down and up,
respectively, along paths inelined at about U45° to the horizontal. By
inspection, the corresponding product-forces are directed downwards and
upwards, with vertical and horizontal components in the ratio 3/1.

Load condition no. 1 1s "fitted". This was confirmed by the experiment, in
which all the segment tensions and nodal displacements measured varied
linearly with the load. These results are not shown here. 4 more interesting

set of results is obtained from load conditidn_no. 2, which has a large

2 This material had been chosen because the method can only work if the

resistance of the wire gauge is high, and in the present application the
gauge length was set to 1m for reasons explained elsewhere,
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TEST | Initial configuration Load condition (added loads)

1. x _ 4 1 2

1" \_/
:3 i i

yd
3
- 3
{
Test |Initial load Node Nodal coordinates [mm]
no. [Nl no. X v
1 0. 0.
1 61.6 2 989, 1001. {1005.)
(81.6) 3 2150. 1001. (1005.)
h 3139. 0.
1 0. 0.
2 672. (669.) YRR (677.)
2 31.6 3 1572, 976,  (982.)
{51.6) 4 2072, (2475.) 674, (677.)
5 3184, Q.
1 0. 0.
2 783. 536,
3 101.7 3 157 3. 1076.
h 2359. 537.
5 3142, 0.
Fig. 7.6 Experiments on hanging cables: cable configuratlons and load

systems for which tests have been made. The table shows the nodal
coordinates at the beginnning of each test.
These drawings are not to scale. '
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non-fitted component. Figures 7.7 and 7.8 show the results obtained for two
different levels of initial bar tensions, corresponding to initial loads of
61.6 and 81,6N; here the main feature is that the tension in segment 2 stays
constant while the remainder vary linearly in consequence of the "fittedn
part of the load. The decomposition of the load condition into its components,
sketched in Fig, 7.9, explains why only the tensions in the side wires need
vary. The plots of measured nodal displacements vs, added load show that, up
to about 10N, nodes 2 and 3 move by equal amounts in the x and y directions
following 3traight lines which correspond to the inextensional mechani sm,
Only at higher loads do the extensional displacements become visible. In
terms of nodal displacements, the only relevant difference between Figs 7.7
and 7.8 is that the actual magnitudes of displacement are larger in the case
of smaller initial loads. The theoretical predictions obtained from SINCA are
very good,

The second test consisted of symmetrical and non-symmetrical loading of
the second cable structure shown in Fig. 7.6, This assembly clearly has two
mechanisms: the first Qf these is most easily visualized by holding node 4
fixed and distorting inextensionally the resulting three-bar linkage as in
the first test. The second mechanism is symmetrical to the first one, see
Fig. 7.10, This cable behaved as expected when subjected to & uniform
increment of all applied loads, load system 1; these results are not shown
here. The behaviour under load system 2, see Fig, 7.11, is symmetrical and the
tensions vary linearly with the applied load, Similarly, see Figs 7.12 and 7.13
for the response to load System 3.

The third test (see Fig. 7.6} had the objective of testing the theory
developed in Chapter 6 in situations where a load is applied to an arbi trary,
and previously unloaded, point of a cable. The number of inextensicnal
mechanisms is still two; each mechanism only inveolves a displacement of
either node 2 or 4 in directions perpendicular to the cable, This introduces a
further complication because any computed displacement of node 3 is due
entirely to the 'extensional component' of displacement {de}. Experimental and
theoretical results are given in Figs 7.14 and 7.15, Notice that the graphs of
the components of displacement of node 3. (as well as node 4, under load

condition 2) have zero initial slope, as expected.
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b}

Fig. 7.9

Fig. 7.10

{i) (i)

25 257 .25
15 1 1

a) Product-forces due to equal initlal loads of 1, acting on the
structural layout of Test 1 (Fig. 7.6).

b) For the same layout, load condition no, 2 has been decomposed
into its inextensional (i) and extensional components (1i).
Clearly (i) is proportional to the product-forces in a); and (ii)
causes equal and opposite changes of tenslon in the side wires

only.

Two independent mechanisms of the hanging cable investigated 1n
Test 2. ‘ '
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7.4 Experiments on cable nets

Tests were conducted on two saddle~shaped cable nets., The layout of the
smaller one is sketched in Fig. 7.2a and 1its nodal coordinates and
connectivity are indicated in Fig, 7.16; it consists of two parallel and equal
sagging wires - segments 1,2,3 and 4,5,6 of Fig. 7.16 - connected by means of
devices as in Fig. 7.1a to the scaffolding described above, and of two similar
hogging wires at right angles to them, Initially the horizontal projection of
the cable net was to consist of segments of equal length, and the square with
vertices in #,5,9,8 was to be at equal distance from the lower and upper
boundaries, as 1In the framework of Fig. 4.18. But first the horizontal
projection had to be modified in order to use the available scaffolding; then
an 'error' in the initial setting up of the net was the cause of a difference
of 9mm between the vertical coordinates of the lower and upper boundary
nodes.3 The analysis described in Chapter 4 shows that a pin—jointed assembly
with the geometry of Fig. 7.16 is statically and kinematically indeterminate,

with m=s=1. The state of selfstress is:

{cdccdcefeef‘e}T

where ¢=1.0275, d=1.00, e=1.0876 and f=1.0616 (the numbering system 1is
indicated in Fig. 7.16). Note that the pf"estr'essing tensions in the horizontal
segments are no longer equal. The components of displacement associated with

the mechaniam, which 1s infinitesimal of first order, are:

(g ~hj ~g-h-jgh=-j-gh j)T

where g=1.0616, h=1.00 and j=4.4931.

Once prestressed this assembly has a set of product-forces whose

directions resemble the mechanism displacements but do not coincide with

3 a compromise between accurate initial alignment and prestressing had to
be reached. The theoretical layout, with x- and y-coordinates  as
indicated in Fig. 7.16b and a 'perfect' elevation, admits the state of
selfstress:

{abaabaabaaba}rT

where a=1.0260 and b=1.
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them, see Fig. 7.17. The existence of such cases has been noted already.

Two different load conditions were considered: the first one consists of
four equal vertical loads directed downwards, and applied in ten increments
of 5N each., It is easy to verify that such a system is orthogonal to the
mechanism, hence it is a "fitted" loading.

Readings were taken for two levels of initial prestress (=50N, =80N) but
only the results relating to the higher pretension will be given here.
Figures 7.18 and 7.19 show that the nodal displacements and wire tensions vary
more or less linearly, as indeed one would expect after Chapter 6: it is plain
from Fig. 7.18 that the horizontal square in the middle of the net translates
downwards, and hence all the vertical components of displacement are
approximately equal, while elongating its sides by approximately equal
amounts; hence x= and y-components of displacement are also approximately
equal, In absolute value. The theoretical analysis predicts that the hogging
cables become slack at a value of 44N of the applied loads; and in fact
Fig. 7.18 shows some ‘'anomalies' at about this level. The kinks in Fig. 7.18
corr'esp_ond, effectively, to the transition from the initial cable net into an
assembly of two independent sagging wires; the theoretical analysis, which
begins to fall because it assumes that all the members can carry tensions of
either sign, must be modified accordingly.

The sécond load condition consisted of equal downward forces acting on
two opposite nodes, 5 and 8 in Fig. 7.16, and also applied in ten increments of
5N each. This force system has non-zero "fitted" and non-fitted components,
and therefore the response to it involves both of the modes of action
described in Chapter 6. The non-linear tightening up of the mechanism due to
the increase of the level of selfstress, pointed out in Section 6.,4.1, can also
be seen clearly in Figs 7.20 and 7.21. Notice that the tensions in the hogging
Wwires remain about constant because the decrease caused by the "fitted"
component of the applied load is balanced, within the experimental range, by
the non-linear Increase.

Numerical estimates based on the f.e., program described previously were
obtained for both load conditions; these results are not shown here because,
although they tend to be in slightly better agreement with the experimental

values that the ones given by MULCA, the difference is not significant.
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Node i ’ Bar from to
no. X y 7 no. node node
i ~961. -305. 155, i 1 y
2 -961. 305. 155, 2 q 8
3 ~305.  -961.  -1L6, 3 8 11 ,
Iy -305.  ~305. 0. 4 2 5 [ Sa8ging
b) 5 ~305.  305. 0. 5 5 9
6 =305, 961. -146. 6 9 12
7 305. =961, ~146, 7 3 b
8 305.  ~305. 0. 8 y 5
9 305. 305, 0. 9 5 6
10 305. 961.  ~-146. 10 7 g ( hogging
1 961. -'“305(. 155. 11 8 9
12 961. 305. 155, 12 9 10
Fig. 7.16 a) Plan view of the smaller cable net which was tested. The
z=axis is upwards.
b) Nodal coordinates and cable segments numbering system. All
dimensions are in [mm],
Fig. 7.17 = 1Isometric view of nodal displacements (solid arrows) and

product-forces (broken arrows) associated with the infinitesimal
mechanism of the cable net of Fig. 7.16.
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Plots of displacements vs. applied load for the cable net of
Fig. 7.16. The load condition, shown in the bottom right corner,
consists of equal downward forces on all nodes. The variable
'load' plotted above 1s the value of each one of these forces.
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Plots of wire tensions vs., applied load, for the cable net of
Fig. 7.16 under uniform vertical load.
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Fig., 7.20 Plots of displacements vs. load for the cable net of Fig. 7.16.
The load condition, shown in the bottom right corner, consists of
equal downward forces on two diagonally opposite nodes. The

variable 'lcad' plotted here is the value of each one of these
forces.
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Plot of wire tensions vs. applied load for the cable net of
Fig. 7.16, under equal forces applied to dlagonally opposite
nodes. See also Fig. 7.20.
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The larger cable net which was tested, see Fig. 7.22, is made out of three
sagging wifes of profile approximately parabolic (segments 1-12) and three
hogging ones perpendicular to them (13-24). The nodes of the resulting net
lie very close to the hyperbolic paraboloidal surface of equation
z=(y*-x*)/5955,0 [mm]. Regarded as an assembly of pin-jointed bars, this
structure has n=21, b=24, ¢=36 and it is found that s=1, m=4; in other words
this cable net 1s a prestressable mechanism like the previous one. This is a
feature common to most cable nets built in practice,

The state of selfstress is:
fabbacddcabbaabbacddcabball

with a=1.00, b=.9356, c=.9042 and d=.8460. Four independent mechanisms have
also been produced by means of the usual computer analysis, but they will not
be shown here.

The task of setting up this net, by modifying the length of the wire
segments by small amounts until thé overall geometry was correct and the
prestressing tensions were in the expected ratios, gave some puzzling results
at first. It was relatively easy to make small adjustments until no error
could be measured in the nodal coordinates, yet the tensions were not very
accurate and any attempt to modify them altered the global level of
pretension rather than only the required values. This 'difficulty' was
overcome by leaving the net pretensioned for about 24 hours. This had the
beneficial effect of removing small kinks in the wire and hence improving the
accuracy of the tensometer described in Section 7.2.5. Only at that stage were
the tests begun.

7 A further confirmation of the correctness of the setting up was obtained
from the experimental readings, as there was a rather small scatter - at most
4Y-5N - of results which, for instance, should have been equal according to a.
theoretical condition of symmetry.

The three load conditions shown in Fig. 7.23 were considered,

The first one consisted of equal downward forces applied to ail the free
nodes; a total load of 9x25N was applied in five increments of 5N to each
hode. This lcoad condition can be obtained as a combinatlon of "fitted loads",

hence it causes purely extensional displacements, and tensions varying
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b) Node Segment | from to
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3 =1571. 811. -304, 3 10 15
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5 -811. -811. 0. 5 2 6
6 -811. 0. -101. 6 6 11
7 -811. 811. 0. T 11 16
8 -811. 1571. 304, 8 16 20
9 0. -1571. ko5, 9 3 7
10 0. =811, 101, 10 7 12
IR . 0. 0. 11 12 17
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15 811, -811. 0. 15 6 7
16 811. 0. =101, 16 T 8
17 811, 811, 0. 17 9 10
18 811. 1571. 304. 18 10 1
19 1571, -811. =304, 19 11 12
20 1571. 0. =405, 20 12 13
21 1571, 811. ~304, 21 14 15
' 22 15 16
23 - 16 17
2l 17 18

Fig. 7.22 aj Planlview of the second cable net described in Section T7.4. The

z-axis 1s upwards.
b) Initial nodal coordinates and connectivity of the cable net

shown above. A1l dimensions are in {mm].
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linearly with th; load; see Fig. 7.24.

The other two load conditions had significant product-force components:
only one corner node was loaded In load condition 2 (Fig., 7.25), and only the
central node in load condition 3 (Fig. 7.26). Note that, had the tested
structure been 'perfect', it would have had, €.8., Ws=W,=W; =W, in Fig. 7.2la,

x=-y in Fig. 7.25b and x=y=0 in Fig. 7.26b. .
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Fig. 7.23 The three load conditions considered for the second experiment
described in Section 7.4. All loads are vertical and directed
downwards.
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Fig. 7.24a Response of the cable net of Fig. 7.22 to a uniformly distributed
. load condlticn, number 1 in Fig., 7.23.
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Fig. 7.25a Response of the cable net shown in Fig. 7.22 to a load applied in

a corner node, load condition no. 2 of Fig. 7.23. The finite
element program gives answers approximately equal to MULCA; the
largest discrepancy is of 0.90mm for w,.

~ -
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Components of'dUchcement {(Node 5)} [mm]

Load [N] -

Fig, 7.25b Components of displacement of the loaded node. See Fig. 7.25a. The
exlstence of a (vertical) plane of symmetry inclined at 45° to
the x and y axes, explains the (theoretical) equality x=-y.
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Fig, 7.25¢ Tensions in the wire segments which belong to the sagging and
hogging wires going through the loaded node, See Fig. 7.25a.
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Fig. 7.26a Response of the cable net shown in Fig., 7.22 to a vertical load in
the centre, load condltion no. 3 of Fig. 7.23.
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Components of displacement of the loaded node. See Fig. 7.26a.
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Fig. 7.26¢ Tensions in some representative wires. See Fig, 7.26a.
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8. Conclusion

A comprehensive investigation of the mechanics of pin-jointed assemblies has
been conducted,
Trying to find an answer to the fundamental question about a given

assembly: is it rigid ? past work on the subject has been revised and

Summarized, and the results common to Independent investigations have been
pointed out.

A conceptual framework has been introduced, which relies on the
introduction of the four fundamental subspaces of the equilibrium matrix of
an assembly. The relevance of computing the bases of these subspaces at the
onset of the analysis, in particular of those ones which give statical
details of the states of selfstress and kinematical details of the
inextensional mechanisms, has been shown. Criteria for the distinction of
rigid-body mechanisms, infinitesimal mechanisms of first and higher order,
and finite mechanisms have been introduced. All the procedures developed are
€ssentially new; in particular the author is not aware of the existence of any
other algorithm for the classification of infinitesimal mechanisms of
arbitrary order which refers only to the initial configuration,

The linear and non-linear responses of kinematically indeterminate
assemblies have been discussed in simple terms, and the ideas introduced have
been exploited to develop efficient‘élgorithms for analysing them, without
going through the standard lengthy procedures in which the applied load has
to be increased in small 8teps in order to- give good results. The comparison
of this new approach to experimental and numerical results has shown its
validity and limitations.

Several by —products have emerged from the above investigation: (1) A
Study of the rigidity of a class of triangulated hyperbolic-paraboloidal
surfaces, shown in Fig. 3.1, which have been proved to be rigid and statically
determinate if the number of sides is odd, Otherwise they are not rigid, and
the number of their infinitesimal mechanisms (of first order) is two less
than the number of sides. (2) A simple and general numerical technique to find
the initial nodal coordinates (formfinding) of a tensegrity structure. (3) on
the experimental side, the main by —product is the construction of a novel

instrument for measuring the tension in a steel wire very accurately.
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Several polints have been left open for further investigation, the most
immediate one being the application of the ideas and techniques of Chapters L
and 6 to more complicated structures, and in particular to problems which are
analysed by means of finite elements. This would bring some direct advantages
to a structural designer and, possibly, lead t¢ a more widespread use of the
force method of analysis.

The application of algorithms based on Chapter 6, for analysing the
behaviour of the cable structures built in practice, will require the
development of the non-linear correction for assemblies with more than one
redundancy; and also the ability to cope with more realistic constitutive
relationships than the linear-elastic, for the cable segments.

Lastly, the ideas - given in Section 6.1.2 - for more efficient estimates
of lower- and upper—bounds in the hypothesis of rigid-perfectly plastic

behaviour need to be developed and tested.
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