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TWO-STEP MATRIX ANALYSIS OF PRESTRESSED CABLE NETS 

S PELLEGRINO and C R CALLADINE 

Department of Engineering, University of Cambridge, 
Trumpington Street, Cambridge CB2 lPZ, U.K. 

We consider the behaviour of the cable-net shown in Fig l when arbitrary vertical forces are 
applied to the nodes. According to linear-algebraic analysis this net has l state of self­
stress and 12 modes of inextensional deformation. We show that the applied loading may be de­
composed into two parts. The first part does not excite any of the inextensional modes, while 
the second part is carried by the net through geometry changes associated with these inexten­
sional modes. The response of the net is linear to each of these separate parts of the loading, 
and the analysis is done by means of 2ox2o square matrices of full rank. We compute displace­
ments for three different loading cases. We discuss, briefly, interactive effects between the 
two types of behaviour, and non-linearities due to stretching of the cables during 'large' 
deflection of the 'inextensional' modes; and we show that both of these refinements can be 
accommodated by means of rapidly converging iterative calculations. 

I INTRODUCTION 

The cable-net shown in Fig 1 consists of two sets of cables 
which are slung between rigid abutments, connected at the 
nodes, and pre-tensioned against each other. Cable nets of 
this sort, composed of quadrangular cells, are considerably 
less rigid than networks composed entirely of triangular 
cells. Thus, if a vertical load is applied to any one node 
of the net, it is carried mainly through the effects of 
geometrical distortion of the net. This may be demonstra­
ted easily by means of a simple physical model. The net is 
relatively 'soft' in response to loads of this sort. It is 
also found by experiment that the relationship between the 
applied load and the displacement which it produces is non­
linear. 

The usual scheme of calculation of a cable net {see, e.g., 
Refs 1-7) envisages the assembly as multi-degree-of-freedom 
non-linear system. Several numerical schemes have been 
devised for solving the non-linear equations; but they all 
require many iterations and are consequently expensive to 
run on the computer. 

In this paper we are concerned with a different kind of 
scheme for computation of the static response of a cable 
net to applied loading. The starting-point of our analysis 
is that an investigation of the 'equilibrium' and 'compati­
bility' equations of a net in its initial, unloaded configu­
ration by means of classical linear algebra reveals that 
the assembly is a pre-stressable mechanism with a large 
number of inextensional modes of deformation. {Thus the 
example in Fig l has a single state of self-stress and 12 
independent inextensional modes.) This leads directly to 
the idea that there are two distinct types of behaviour 
within the assembly. First, some patterns of loading are 
carried by the assembly as an ordinary structural frame­
work, without excitation of any of the inextensional modes: 
the loads are balanced by changes of tension in the various 
cable-segments. Second, other patterns of loading are 
carried by virtue of the geometry-changes associated with 
the inextensional modes, without any change of tension in 
the cable-segments. 

z 

Fig 1 Saddle-shaped cable net 

This scheme of classification was described first in Ref 8, 
where it was shown that the assembly is 'stiff' and 'soft' 
respectively in its two distinct types of action. It was 
also demonstrated that the two different types of action 
constitute two separate and distinct linear systems operat­
ing side-by-side {for sufficiently small loads, at least), 
each with its own eigenmodes. 

For the past year we have been pursuing these ideas further, 
with a view to computing the behaviour of arbitrary cable 
nets under arbitrary static loading. We have developed com­
puter programs which use linear algebra to generate, automati­
cally, the states of self-stress and the inextensional modes 
of a given network; and we are developing other programs 
which perform the · structural ·analysis of the two distinct 
kinds on the basis of this information. 

In the present paper we give examples of the response of the 
net in Fig 1 to three different patterns of applied loading. 
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Our treatment is primarily on the lines of separate inves­
tigations of the two types of behaviour described above; 
but we also discuss the way in which the two types of be­
haviour can interact, and we introduce a simple way by which 
nonlinear effects due to relatively large deflection of 
the 'inextensional' modes may be computed. In these phases 
of the work it is sometimes necessary to adopt an iterative 
scheme of computation. However, the number of iterations 
required in practice appears to be very small. 

It is interesting to note that the first treatment of the 
linear algebra of cable nets was given in a section of a 
paper by Buchholdt, Davies and Hussey"(Ref 1). The sec­
tion was self-contained, because the authors evidently saw 
no way of using to advantage the information generated by 
linear algebra in the general non-linear multi-degree-of­
freedom scheme of computation which they described in· the 
subsequent part of the paper. We have accepted the chal­
lenge implicit in the work of Ref 1; and we are now . able to 
show how the results of the linear-algebraic approach to 
cable nets can be used in what promises to be an extremely 
efficient scheme for the computation of the behaviour of 
the nets. 

Both M¢llmann (Ref 5) and Irvine (Ref 9) have considered 
the behaviour of cable nets of the type shown in Fig 1, 
treating the assembly as a continuum governed by differen­
tial equations. The idea of decomposing the applied load­
ing into two distinct parts does not appear in such a 
scheme. 

I I INEXTENS IONAL MECHANISMS AND 'FITTED' LOADS 

For the sake of definiteness we consider a cable net con­
sisting of 5 longitudinal 'sagging' cables and 4 trans­
verse cables, as shown in Fig 1. The nodes all lie on the 
surface 

1, 

in the cartesian space whose axes are shown. · The longitudi­
nal and transverse cables lie in planes y = 0, ±t, ±2t and 
x = ±Y2t, ±o/2t respectively, and the rigid abutments are in 
planes y = ±3t and x = ±~2t. The 'dip' of the longitudinal 
cables from the abutment-points to the lowest nodes is equal 
to h, and so is the 'rise' of the transverse cables. 

It is easy to verify that the net has a single state of 
self-stress (i.e. a state of stress in equilibrium with 
zero external load) in which the horizontal component of 
tension in every segment of the longitudinal cables is T0 , 
and in every segment of the transverse cables is 1.5T0 • 
This produces a vertical reaction of Toh/3t between the 
cables at each node of the net. The magnitude of To may be 
altered by a tensioning device at the abutments. There is 
only one state of self-stress in the sense that, for the 
given configuration, the tension in every bar may be deter­
mined by the equations of equilibrium at the joints as soon 
as the tension in any one bar is given. (The net is simi­
lar to the one described in Ref 8, except that the geometry 
has been altered in detail to give different levels of self­
stress in the two sets of cables.) 

The first step in the linear-algebraic analysis of the net 
is to apply the general version of 'Maxwell's rule' 
(Ref 10): 

3j - b = m - s 2, 

where ·j is the number of nodes or 'joints' (excluding abut­
ment points) , 

b is the number of cable-segments (or 'bars': we 
assume throughout that every cable-segment is in 
tension) , 

m is the number of modes of inextensional distortion 
of the assembly, and 

s is the number of states of self-stress. 

Here 20, b = 49 and s = 1; and so 

m = 12 3. 

The form of the inextensional modes for this type of net 
(see Ref B) is very simple. A typical mode (Fig 2) in­
volves equal alternate up- and down-displacement at the four 
corner nodes of an interior cell, while all other nodes are 
fixed. In Fig 2 the. net has been drawn as if it were plane, 
for the sake of clarity, but the pattern of vertical dis­
placements is the same for the plane and the original net 
(cf. Ref 8). The four nodes of the original net also have 
components of displacement in the x- and y-directions; but 
these need not concern us here, as will be explained below. 
These modes on the pattern of Fig 2 are inextensional in the 
sense that each cable-segment suffers zero first-order ex­
tension when the displacement takes place. For this net the 

Fig 2 Inextensional mode of deformation 

second-order changes in length are in fact non-zero, and so 
the modes are strictly inextensional only for sufficiently 
small displacements. We shall discuss the mechanical impli­
cations of this geometric feature in Section V. (Maxwell's 
rule, being rooted in the linear algebra of infinitesimal 
displacements, does not distinguish between 'free' and 
'incipient' modes of inextensional displacement: see, e.g., 
Refs 11,12.) 

The given net has exactly 12 'interior' cells. The pattern 
of Fig 2 may be applied at each cell in turn, making a total 
of 12 inextensional modes of deformation. The 12 modes are 
linearly independent in terms of their components of dis­
placement, and thus any inextensional deformation of the 
assembly may be described as a linear combination of these 
12 modes. (It is easy to show from Eqn 2 that in a more 
general net of the same type having mxn cables there are 
(m-l)x{n-1) inextensional modes on the pattern of Fig 2.) 

Now the most general loading which can be applied to the net 
of Fig 1 has 3 components of force at each of the 20 nodes: 
the 'load space' has a dimension of 60. The corresponding 
'displacement space' also has a dimension of 60, since there 
are 3 components of displacement at each joint. The linear­
algebraic analysis of the net (which will be described in 
full elsewhere) indicates that the GO-dimensional displace­
ment space consists of the 12-dimensional sub-space of inex­
tensional displacements (described above), together with a 
48 (=60- 12) -dimensional space of extensional displace­
ments. An extensional displacement of the assembly is like 
the deformation of an ordinary triangulated framework, in 
which the displacements of the joints are a direct kinematic 
consequence of the extensions of the bars. The main differ­
ence between a cable net and an 'ordinary' framework is that 
if we are to discuss the extensional modes of a cable net, 
we must make sure that the applied pattern of loading does 
not 'excite' any of the inextensional modes of the assembly. 
(It is necessary to check, of course, that all of the cable­
segments remain in tension under a given loading.) In the 
language of linear algebra, the patterns of loading associa­
ted with the purely extensional modes must be orthogonal to 
each of the 12 inextensional modes. These 'fitted' loads 
(as Vilnay, Ref 13, calls them) fill the 48-dimensional sub­
space of loads which is orthogonal to the 12-dimensional sub­
space of inextensional displacements. 

For the net of Fig 1 it is not difficult to obtain, by in­
spection, the 48 independent sets of 'fitted load' which 
are orthogonal to, and so do not excite, the inextensional 
modes. Consider first an isolated cable which is subjected 
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(a) (b) 

Fig 3 'Fitted' loads on single cable 

to a horizontal force of given magnitude at one node, as 
shown in Fig 3a. It is easy to find, by the application of 
equilibrium equations, a s e t of vertica l loads at 
the joints which enables the cable to carry the applied 
horizontal load while remaining in its original geometrical 
form. This pattern of loading constitutes a set of 'fitted ' 
loads for the entire net when a horizontal force is applied 
at a single node of the net. Altogether there are 40 in­
dependent patterns of 'fitted ' load of this type -we use 
in turn the 2 cables passing through each node-and conse­
quently only 8 more of the 48 cases of 'fitted' load remain 
to be determined. Since we have already considered all 
possible patterns of horizontal loading, these 8 cases can 
involve only the application of vertical forces to the nodes. 

Figure 3b shows an isolated cable of the net under a set of 
equa l vertical loads at the joints: when the magnitude of 
one of these has been assigned, the remainder follow from 
the equilibrium equations of the joints. In this way it 
seems that there will be 9 'fitted' loads of this pattern -
since the net consists of 5 + 4 = 9 cables - rather than the 
8 which we are seeking. This paradox is resolved by the ob­
servation that if all 5 longitudinal cables were equally 
loaded as in Fig 3b, there would then be equal loads on all 
of the nodes of the net; which would in fact be indistin­
guishable from a case in which all 4 transverse cables were 
equally loaded. It follows from this that the complete 
range of vertical load cases which are orthogonal to all 12 
inextensional mechanisms is spanned by 'fitted' loads as in 
Fig 3b on any 8 of the 9 cables: it is immaterial which of 
the 9 is omitted for this purpose. 

III 'FITTED' LOADS AND 'PRODUCT FORCES' 

So far we have discussed the space of external loads as 
being GO-dimensional . For the sake of compactness let us 
now confine our attention to the case in which all of the 
loads applied at the joints are vertiaal. In this way we 
shall be concerned only with a 20-dimensional sub-space of 
the load space. Let us adopt the nodal numbering system 
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Fig 4 Numbering scheme 
for nodes, cf Fig 1 

shown in Fig 4 . The eight 'fitted' loading cases described 
above may be represented by the first 8 columns of the 
2ox2o matrix in Eqn 4. (Cable 3-18 has been taken as the 
odd one . ) The magnitude of any 'fitted ' load is, of 
course, indeterminate, so i t is convenient to use l's in 
the 8 columns; the magnitudes are the coefficients 
a. 1 • • • a.8 in the postmultiplying column vector . Equation 4 
states that any arbitrary loading state - here represented 
by a 20- element column vector on the right - can be des­
cribed as the sum of the 20 ·column vectors of the square 
matrix after each has been multiplied by a coefficient a. or 
tl. If the equations can be solved uniquely, then a. 1 ••• a. 8 , 
tl 1 • •• tl12 are the components of 20 'standard' loading cases 
which are found in the given loading. 

We have not yet discussed the 12 remaining columns in the 
2ox2o matrix of Eqn 4 . What loading conditions do they 
represent? Following the preceding discussion, they must 
be 12 loading cases which do excite the inextensional modes, 
in contrast to the 8 ' f i tted ' loading cases which do not. 

Figure 5 shows part of a plane , square grid of cables under 
tension To and 1.5T0 , respectively, onto which has been 
imposed a typical unit case of inextensional displacement. 
It is clear that if To ~ 0 some external forces are needed 
to maintain equilibrium. In Fig 5 the grid has been drawn 
plane since this simplified arrangement correctly gives (as 
may be shown easily; cf. Ref 8) the vertiaal forces which 
are required in the actual net when the inextensional mode 
occurs. This scheme does not include, of course, the asso­
ciated horizontal forces which are required for equilibrium 
in the actual net; but this does not mat ter in the present 
problem, where we are considering only vertical forces, 
since any horizontal forces can be countered by superposi­
tion of the 40 discarded 'fi tted' load cases. (In the case 
of a s hallow net (h « 5t) the horizontal forces required for 
equilibrium would be small anyhow.) 

The vertical forces shown in Fig 5 have been found by sum­
ming the forces needed for equilibrium of the cables separa­
tely . The forces needed for equi l ibrium of a single cable 

1 
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1 

1 
1 
1 

(ii) 

1 
1 

1 
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1 

1 
1 

(iii) 

•• . • .• 4 . 

are f ound by using the equilibrium 
equations of the nodes in the dis­
torted configuration. This is a 
linear calculation, since the dis-
placements are assumed to be small; 
and the pretension in the elastic 
cables does not change in an inex­
tensional mode of deformation. The 
forces in Fig 5 have been given 
numerical values for the sake of 
simplicity, but it is easy to show 
that the unit of these forces is 
Tow/i, where ±w is the vertical dis­
placement of the nodes. 

There is a set of loads of this 
kind associated with each of the 12 
distinct inextensional modes; and it 
is these 12 sets which appear in 
columns 9- 20 of the matrix in Eqn 4 . 
we call these the 'product forces' 
of the net . Thi s is not an ideal 
descriptive term, but it does ex­
press the idea that the forces con­
cerned are a sort of product of the 
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Fig 5 'Product ' forces for mode of Fig 2 

state of prestress and an inextensional mode. 
(ii ) 

Fig 6 Three patterns 
of loading 

(i) 

The matrix is in fact of full rank , and so the equations 
have a unique solution for any given loading case. Three 
particular loading cases (i- iii) are given in Eqn 4, cor­
responding to the t hree loading conditions shown in Fig 6 . 
In each case a node which is loaded carries a vertical force 
of magnitude F in the downward direction (z > 0) of Fig 1. 

The sol ution of Eqn 4 is given in Eqn 5. It is easy to see 
t hat ~ase (i) is a simple combination of 2 ' fit t ed' loads , 
so that in particul ar ~ 1 • • • ~ 1 2 = o. In case (ii) the 
applied load decomposes into 8 ' fitted ' l oads and 8 'pr o ­
duct forces ', though the latter have smal l magnitude i n com­
parison with the two leading 'fitted ' loads. Lastly, in 
case (iii) , it· is the 'product forces ' which have the domi­
nant coefficients . 

single degree of statical indeterminacy . Then we find the 
(strictl y , mean) vertical displacement of the nodes of each 
c able in turn by a simpl e appl ication of virtual work. (In 
evaluat ing these displacements we have, for the sake of 
computati onal simplicity, taken the cross- sectional area of 
the horizontal cable-segments as A0 , and of the inclined seg­
ments as A0sec 3e, where e is the angle of inclination. In 
this way the calcu lation becomes independent of the value of 
h/t. E is the Young ' s modulus of the material of the cables.) 

The matrix in Eqn 6 is post-multiplied by a column vector 
which contains 

IV DISPLACEMENTS OF THE CABLE NET 

Having decomposed a given set of appl ied l oads into 'fitted' 
loads and ' product forces ', we can now examine the dis­
placement of the assembly under each of the 20 component 
loading conditions separat ely, and then take the sum . This 
operation is shown in Eqn 6 . Here w1 • • • w20 are the ver­
tical displacements of t he 20 nodes . The 2ox2o matrix has 
8 columns corresponding to the 'fitt ed ' loads and 12 for the 
inextensional mechanisms . The latter are self- explanatory 
in terms of Fig 2. The derivat ion of the first 8 columns 
is straightforward , and we do not give full details here . 
Briefl y, we first calcul ate the tension in every cable 
segment when a given fitted load is appl ied to the cable 
net , either by using the method given in Ref 8 or by a 
v i rtual work calculation in which the state of prestress is 

·used as a 'dummy load' condition: t he problem involves a 
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multipliers A and B. The factor A involves the modulus of 
elasticity, etc., of the cable segments, while B involves 
only the level of prestress in the net. On the RHS of Eqn 6 
the displacements have been evaluated from the values of a, 
S in Eqn 5 for the three loading cases, and with the exten­
sional and inextensional moieties separately. Notice that 
in each case the displacement is proportional to F; but ob­
serve how the relative magnitude of the two parts depends 
in particular on the magnitude of the factor 

~ = (~)2 ~ 7. 
A i To 

Now a typical cable-net might have a rise/span ratio of 0.1, 
i.e. here h / 5.5 i = 0.1; and the prestress might have a value 
of T

0 
which gives a tensile strain E = lo- 3 , and thus 

A
0
E/T0 = 1000. For such a net, therefore, 

B A= 3oo B. 

Inspection of the numbers in the RHS columns of Eqn 8 with 
this value of B/A reveals that in loading case (ii) (Fig 6) 
the displacements due to extensional and inextensional 
effects are of the same order, while in case (iii) the in­
extensional effects are dominant. 

Isometric plots of vertical displacement for loading cases 
(ii) and (iii) are shown in Fig 7. The nodes which carry 
forces are marked. Th~ value of F in case (ii) has been 
set at 4/ 3 of that in case (iii), so that the total verti­
cal load is the same in both cases: total load = BF. 

It is clear that the net deflects more when the load is 
disposed on a diagonal, as in (iii), than when it is 
applied centrally, as in (ii). The displacements corres­
ponding to case (i) are not illustrated. They are much 
smaller in magnitude (see Eqn 6), since the inextensional 
modes are not excited. 

V DISCUSSION 

OUr example provides a clear illustration of the way in 
which the two kinds of behaviour in cable nets may be 
analysed by means of linear algebra. For the sake of sim­
plicity, and at the expense of some precision, we have 
dealt only with the 20-dimensional subspace of vertical 
loads and displacements. But the same principles apply 
equally to the full Go-dimensional version, and the over­
all results do not differ by much. As we mentioned earlier, 
our example has the convenient feature that we can find the 
columns of the relevant matrices by inspection-, and at the 
expense of little effort. In a less straightforward 
practical problem, of course, the computer would gener at e 
the relevant matrices automatically from the data on the 
form of the net, by use of the program mentioned in 
Section I. 

(ii) 

The calculations descr~bed in the preceding sections cannot 
be regarded as complete as they stand, however, for two 
reasons. First, we have calculated the 'product force' 
columns in the matrix of Eqn 4 on the assumption that the 
horizontal components of the tension in the cable segments 
are To and 1.5T0 , respectively. But it is clear that, in 
general, the imposition of the 'fitted' part of the applied 
load changes the tensions to some extent, as described in 
Section IV. If the magnitude of the applied load is such 
that the tensions are changed from their original values 
by, say, more than 20%, then the changed tensions ought to 
be used in the calculation of the last 12 columns of the 
matrix of Eqn 4. This is somewhat problematical, since the 
decomposition of the applied load into the two classes of 
'fitted' load and 'product forces' cannot be accomplished 
until the matrix is known; and yet the columns cannot be 
finalised until the decomposition is known. Some simple 
iterative calculations which we have performed on these 
lines suggest that the process converges rapidly. For 
example, only one iteration is required to complete the 
calculation for our loading case (iii ) . 

The second question concerning the correctness of the 
results comes from the observation that the 'inextensional' 
displacements are only truly inextensional for sufficiently 
small displacements. 

Consider, for example, the cable shown in Fig Ba. The dis­
placement shown has w/i = 0.1, so the two segments rotate 
by arcsin 0.1 = 5.74° . This involves an overall stretching 
of the cable which is equal to (sec 5.74°- 1) = 0.005 of 
the length of the two segments concerned; or ~ o~ this, 
i.e . 0.002, of the length of the entire cable. Thus, if 
the original level of prestress in the cable represents a 
strain of 0.001, the displacement shown in Fig Ba would 
treble the prestressing tension. In general, the load­
displacement relationship is non-linear, since T increases 
with w. 

Now in relation to the transverse forces on the cable which 
are necessary to produce the displacement shown, the 
previous calculation of 'product forces' would be correct 
if only we could determine the current level of prestress, 
taking into account stretching effects of the kind just 
described. The calculation above suggests that we would 
need to investigate the angular rotation of all of the 
cable-elements in the net. It turns · out, however, that 
this is not necessary; and that the calculation can be per­
formed easily, in one step, as soon as the linearised com­
putation has been performed. 

Ba, with the cable 
suppose that the 
perfeat l y plastia 

Consider again the example shown in Fig 
at a prestressing tension T0 • Further, 
original elastic cable is replaced by a 
one having a cli!nstant yield tension T0 • 

verse force P is now applied the tension 
since To is now a property of the cable. 

(iii) 

When the trans­
remains at T0 
In this case, 

9, 

Fig 7 Plot of vertical displacements, cf. Fig 6. Unit for vertical scale: Fi /lOT0 • 
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Fig 8 Computation of the 
extension of a cable ~r---t....__ __ ;;::;;;:;:;it:;;;;w ~L-....__11.~-l--t~ 

when we neglect terms of order T
0

(w/11.)3. This linear rela­
tionship between P and w is shown in Fig Bb. 

Now suppose that P has increased steadily until w; w0 • 
The total work done on the wire by the applied transverse 
load is equal to the shaded area, viz. 

T 0w0
2 /ll. 10. 

The only way in which the cable can absorb this work is by 
stretching; and since the tension remains constant at T

0
, 

the overall extension e of cable is given by 

11. 

The original length of cable is 511., and hence the overall 
strain E in the cable due to the distortion from its 
straight original configuration is given by, 

E o.2(w0/11.) 2 

0.002 when w0;R. ; 0.1 

The result is the same as before. 

We have used here the artifice of a 'perfectly plastic' 
cable in order to perform a geometricaL calculation; and 
the result is therefore valid even when the cable is 
elastic. 
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